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Abstract
In this work, we propose a method that enforces explicit control over various attributes during the image generation process 
in a generative adversarial net. We propose a semi-supervised learning procedure that allows us to use a quantized approxi-
mation of object orientation for learning continuous object rotations. As a result, among many other attributes, our proposed 
method allows us to control object orientation in scenes that are rendered according to our specifications.

Keywords Image synthesis · 3D rendering · Generative adversarial nets · Conditional · Regression · Rotation · Semi-
supervision · Cooperation

Introduction

Computer Graphics traditionally require a three-dimen-
sional model of the objects that are to be rendered. These 
3D models are then texturized and placed in a virtual three-
dimensional space. This three-dimensional space is then 
projected to two dimensions in order to show the result on 
a screen. In this work, we explore the possibility of embed-
ding three-dimensional knowledge in a deep neural net. We 
propose to omit 3D modeling and subsequent 2D projection 
by directly rendering the 2D result from a given specification 
of the desired scene. Adherence of the resulting deep neural 
renderer to this specification is key to obtain useful results. 
A particular focus of this work is to achieve fine-grained 
control on the orientation of objects in the resulting scenes.

Our contributions are as follows: 

1. We propose a training procedure that explicitly enforces 
the adherence of a generative adversarial model to a 
given specification of the scene that is to be rendered.

2. We propose a method to learn continuous rotations from 
data that is only annotated categorically, i.e., angles are 
quantized to the nearest 45◦ . We propose to leverage 
the continuity and periodicity of rotations and extend 
the formulation of conditional GANs to such continu-
ous targets. This effectively results in a regression-based 
GAN formulation.

3. The above-mentioned categorical annotations of rota-
tions induce label sparsity when reinterpreted as con-
tinuous labels, i.e., our data do not provide any exam-
ples for angles in between the quantized annotations. To 
overcome this limitation, we propose a semi-supervised 
method that forces generator and discriminator to find 
agreement for these intermediate rotations.

4. Given the novel focus on generation of continuously 
changing object orientations, we propose novel methods 
for evaluation.

5. We present a dataset that is annotated with a huge vari-
ety of attributes.

This work is organized as follows. In "Related Work", we 
first discuss relevant related work. In "Dataset", we intro-
duce our dataset including the annotated attributes which 
in combination form possible specifications. In "Goals and 
Metrics", we discuss and propose metrics for evaluating our 
proposed system. In "Conditional Object Synthesis", we 
introduce our approach to enforce adherence of our model 
to the specifications and discuss the proposed method for 
learning continuous rotations. In "Results", we analyze our 
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results both qualitatively as well as quantitatively. "Conclu-
sion" concludes this work.

Related Work

In this section, we cover related work for controlling the 
output of synthesis methods and related work for generative 
adversarial net (GAN)-based 3D rendering. Afterwards, we 
cover the StyleGAN2 [1] method for image synthesis which 
is the basis for our method.

Control in Image Synthesis Methods In GANSpace: Dis-
covering Interpretable GAN Controls [2], Härkönen et al. 
propose a method for analyzing the latent space in GAN-
based methods. They identify important latent directions 
based on Principal Components Analysis (PCA) applied in 
activation space [2]. From PCA in activation space, they 
derive directions in the latent space that correspond to a 
change in certain semantics. In StyleGAN-based networks, 
they show that they can find combinations of layer-wise 
changes that allow to target certain semantics of the gener-
ated images. In contrast to that, our method enables direct 
control over important semantics because we use semantic 
labels to directly control the learning of our model.

GAN-based 3D rendering GANs can generally be consid-
ered neural renderers. The result of this process typically is 
a 2D image in RGB-space or similar domains [3–5] Lately, 
methods for GAN-based 3D rendering have been proposed. 
They typically aim to construct a 3D model of an object or the 
scene [6–8]. In Image GANs meet Differentiable Rendering 
for Inverse Graphics and Interpretable 3D Neural Rendering 
[7], Zhang et al. propose a model that uses an inverse graphics 
network, i.e., a network that predicts 3D meshes, lighting and 
textures from 2D images. They use this information to subse-
quently render a 3D scene with a differentiable renderer. To 
learn this network, they use a StyleGAN as a neural renderer 
to create images with approximate orientations. To do this, 
they first needed to find the parts of the latent code as well 
as the important layers that control these orientation manu-
ally. With these synthesized images, they then train the inverse 
graphics network. In contrast to Zhang et al., we do not do 
inverse graphics but rather aim for the opposite, i.e., we aim to 
imitate 3D rendering with subsequent projection to two dimen-
sions without ever requiring a 3D representation explicitly. 
However, we aim to explicitly control object rotation which 
is a three-dimensional property. In GAN-Control: Explicitly 
Controllable GANs [9], Shoshan et al. present a model that 
is capable of controlling image semantics directly. They pro-
pose to enhance adversarial training with additional contrastive 
objectives that they learn for each controllable attribute. Given 
the resulting generative model, they then learn an encoder that 
estimates a suitable latent code from a given specification. 
They also showcase limited control over the orientation of 

generated objects, i.e., in contrast to ours, their model cannot 
perform full rotation cycles.

StyleGAN2

The StyleGAN2 model [1] is the basis for this work. It is a 
deep generative model for image synthesis that has gained 
a lot of popularity due to its capability of generating highly 
realistic images. As the name implies, this model is learned 
in an adversarial setting, i.e., the learning procedure requires 
a discriminative model that is used to supervise the genera-
tive model. However, the generative model differs greatly 
from standard convolutional feed-forward architectures. 
This is due to the explicit separation of the convolutional 
image generation from something that the authors term as 
style. Here, style refers to the relative importance of indi-
vidual learned features that are used to compose the result-
ing image.

Architecture

The StyleGAN2 architecture consists of two feed-forward 
networks running in parallel. For this work, we will term 
them as the dense stream and the convolutional stream. The 
convolutional stream is the part of the model that performs 
the actual image generation task, i.e., it takes an input c1 
and transforms it into an image by multiple convolution and 
up-scaling operations. However, the input c1 to this main 
convolutional stream is constant. Thus, the convolutional 
stream, by itself, would only ever produce a constant output. 
Variance in the output is produced by the dense stream. This 
dense stream first embeds a random latent input z ∈ Z in a 
mapped latent space W. Embeddings w ∈ W  are then used 
to modulate the weights of the main convolutional stream, 
i.e., individual filters of the convolution layers are scaled in 
order to reduce or increase their relative importance. Note 
that, Z does not need to be completely random. In fact, we 
can use the dense stream to explicitly control the output of 
the convolutional stream by extending individual latents z 
with conditioning information, i.e., add information about 
the desired image to the latents. For this work, we will utilize 
an abundance of attributes like object color, orientation, and 
many more, to precisely control the output of the genera-
tive model. Learning such attributes requires a dataset with 
corresponding annotations which we will further detail in 
"Dataset".

Dataset

For this work, we use an extended version of the cars30k 
dataset [10]. This extended version contains a total of 73,784 
images with multiple new annotations. In addition to the 
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existing body color annotations, we annotated body style, 
background scenery, and the rotation of the cars. To speed 
up the annotation process we adopted the following strategy:

• We annotate approximately 600 images for every new 
class. We find these images by selecting a few images 
manually and searching for nearest neighbors via a per-
ceptual distance, i.e., we are looking for nearest neigh-
bors in the deep features of a convolutional neural net-
work (CNN). We then select matches manually.

• We keep ≈ 120 images per class for testing and use the 
remaining images to finetune a Resnet50 [11] that is pre-
trained on the ImageNet dataset [12]. These classifiers 
typically achieve ≈ 90% accuracy on the test data.

• We use the learned classifiers to label the remaining 
images automatically.

• We check the resulting classifications manually and 
remove all images that are not correctly assigned to each 
of the new classes. Thus, we can safely assume that most 
of our annotations are correct, i.e., annotation accuracy 
is considerably higher than our 90% test accuracy. Note 
that the removed images not only include wrong labels 
but also include some rare instances of images that show 
multiple cars or images of the interior of cars.

Body Colors

In Fig. 1, we show the distribution of body colors. We dis-
tinguish between 11 different colors as well as an additional 
undefined/other color which describes all types of cars that 
are not colored uniformly. In total, we have 30,016 images 
that are annotated with the body colors of the cars that are 
shown.

Manufacturers and Models

Figure 2 visualizes the distributions of car manufactur-
ers and car models in the dataset. There are 18 different 
manufacturers and 67 different car models annotated in the 

dataset. In total, we annotated 70.461 images with manufac-
turer labels and 70.420 images with car model labels.

Object Rotation

In Fig. 3, we illustrate our rotation annotations. Note that 
the crafting of precise object rotation annotations is virtually 
impossible as it involves manual estimation of 3D object 
pose. Such a process would not only require precise manual 
annotations but also requires the camera to be calibrated. 
Both requirements are infeasible or even impossible to fulfill 
when working with images that are randomly downloaded 
from the internet. Thus, we opt for a simpler annotation pro-
cess. Similar to the color annotations we adopt a quantiza-
tion process. We quantize the rotations of cars shown in the 
images to eight categorical rotations (see Fig. 3 for a listing). 
This categorical definition of object rotation simplifies the 
annotation process massively because it does not require 
to measure the exact rotation of an object. As visualized in 
Fig. 3, we define the rotation as the direction of the hood of 
the car as seen from the position of the camera. Instead of 
measuring, we can annotate the rotation by simply identify-
ing the approximate direction of the hood of a car, e.g., the 
annotated class is profile left if the car is visible from the 
side and the hood points to the left or similarly the annotated 
class is front center if the hood of the car points directly 
towards the camera.

Body Style

In Fig. 4, we illustrate all different body style categories that 
we annotated in our dataset. Note that the hatchbacks form 
the most frequent class while off-road vehicles and pickup 
trucks are not as common in the dataset. As such, the distri-
bution of body styles probably resembles a distribution that 
is closer to a European distribution of body styles. In total, 
39,187 of all 73,784 images are annotated with the body 
style of the cars that are shown.

Background Scenery

Fig. 1  Histogram of car body 
colors in our dataset sorted by 
frequency of the individual 
colors

label white red black silver gray blue yellow undefined brown orange green purple
#examples 5524 5120 4728 4042 3455 3244 965 775 717 611 595 240
color
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label bmw mercedes audi porsche opel dodge
#examples 11214 9485 8639 5714 5513 4564
color
label mazda vw ferrari dacia fiat honda
#examples 4447 4206 3928 2756 2597 2436
color
label cadillac lada hyundai tata goggomobilsubaru
#examples 1247 941 891 884 542 457
color

Fig. 2  Distribution of car manufacturers and car models in the dataset. Top: car manufacturers. Bottom: car models

label front left profile left profile right front right rear left rear center front center rear right
#examples 24059 18161 8634 6864 4435 3695 3258 1752
color

Fig. 3  Different rotations labeled in our dataset. We quantize rota-
tions to 8 discrete labels. Top: histograms of rotation frequency. 
Top left: histogram  (logarithmic scale) sorted by object rotation 
in a top-down view. The black box represents the camera. Rotation 

labels describe the orientation of a car, i.e., the direction in which the 
hood of the car points as observed from the camera. Top right: his-
togram (linear scale) sorted by the frequency of the individual rota-
tions. Bottom: table of class frequencies and legend
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In Fig. 5, we illustrate the different background annotations 
in our dataset. We differentiate six different types of com-
mon background sceneries: 

1. Showroom Mostly indoors, often some sort of marketing 
poster in the background.

2. City Outdoors, usually on a street, buildings in the back-
ground.

3. Countryside Outdoors, usually on a street, nature in the 
background.

4. Off-road Outdoors, no street, nature in the background.

5. White No scenery, white background.
6. Black No scenery, black background.

In total, 43,883 of all 73,784 images are annotated with one 
of the above background scenery labels.

Aspect Ratio

We quantize aspect ratios of our images to five categories. 
For this purpose, we define the aspect ratio RI of an image 
I in our dataset D as the ratio between image width WI and 
image height HI:

label Hatchback Sports
Car

Limousine SUV Coupé Convertible Van Station
Wagon

Off-
Road

Pickup
Truck

#examples 8796 8072 4915 3592 2964 2451 2435 2392 2156 1414
color

Fig. 4  Body style labels in our dataset. Top left: histogram of body style labels. Top right: color-coded examples for each of the annotated body 
styles. Bottom: Table of class frequencies and legend

label showroom city countryside off-road white black
#examples 14961 11474 9574 3971 3173 730
color

Fig. 5  Background labels in our dataset. Top left: histogram of background labels. Top right: color-coded examples for each of the background 
labels. Bottom: table of class frequencies and legend
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We quantize RI  ∀I ∈ D to the nearest category 
yR ∈ [1.2, 1.4, 1.6, 1.8, 2.0] . Note that these are all aspect 
ratios for landscape images as portrait images are practically 
non-existent in the dataset. Note that we need these annota-
tions to explicitly control the aspect ratios of the images that 
are generated by our proposed method. Due to this demand, 
we want the aspect ratios of our image to be exactly correct 
during training. We achieve this by cropping the training 
images to the exact aspect ratio as defined by the annotation 
yR
I
 . We create minibatches for training by zero-padding all 

training images to a quadratic shape. The complete process 
is visualized in Fig. 6.

Goals and Metrics

In this work, we aim to produce a series of images that show 
a specific car, i.e., a specific model with a specific body style 
and a certain color, in different rotations. In particular, we 
aim to create a series of images that exhibits continuous rota-
tion of the car of interest. Evaluating a system that produces 
such a series of images, however, is non-trivial as we need 
to measure an abundance of aspects in the resulting images. 
First, we obviously want the generated images to be of high 
quality, i.e., the images should look realistic. Note that this 
requirement should ideally hold for all possible conditions, 
i.e., we also want to produce high quality for combinations 
of target labels that do not exist in the dataset. Here, we 
specifically aim to produce continuous rotations despite the 
fact that our dataset is only annotated with discrete rotation 
labels. In "Image Quality", we discuss metrics that capture 
these aspects in the generated images.

In addition to image quality, we expect the generated 
images to follow our conditioning guidance, i.e., the gen-
erative model should produce images that show a car that 
exactly fulfills our specifications. These specifications 
include all annotations in our dataset, i.e., 

(1)RI =
WI

HI

.
1. body color
2. car manufacturer
3. car model
4. rotation
5. body style
6. background scenery
7. image aspect ratio

. In "Conditioning" we introduce metrics that measure the 
realization of these specifications.

Our goal is to rotate a specific car in a specific scenery. 
As such, it is important to maintain all conditions across 
a series of different rotations, i.e., ideally, the only aspect 
that changes in a series is the rotation/orientation of the 
car. Besides that, it should still be the same car in the same 
scene. In "Conditioning" we discuss measuring the quality 
and consistency of conditions under different rotations.

Finally, we need to measure the quality of the rotation 
in a series of images. Here, we aim to measure two aspects. 
First, we need to find a measurement to properly quantify 
the deviation of generated rotations from our specified rota-
tion. Second, ideally, we would like to perform complete 
rotation cycles, i.e., rotate from 0 ◦ to 360◦ as smooth and 
steadily as possible.

Image Quality

In this section, we will shortly introduce the Fréchet Incep-
tion Distance (FID) for evaluating image quality. Evaluat-
ing the quality of generated images is highly non-trivial as 
any metric basically needs to replicate human perception 
of images. As such, there is no perfect method to do so. 
However,

Fréchet Inception Distance [13] is the most widely used 
measurement for quantitatively assessing the quality of a set 
of generated images. Note that, as the name states, FID is 
not a metric but a measurement of distance. Fréchet Distance 
[14], in its origins, is a measure of similarity between two 
curves. However, it can also be used to measure the simi-
larity between probability distributions. Note that we can 

Fig. 6  The aspect ratio quanti-
zation process. We categorize 
each image into the nearest of 
one of 5 aspect ratios. We then 
crop the image to the exact 
ratio. The resulting images are 
padded to a quadratic shape for 
training

aspect ratio 1.2 1.4 1.6 1.8 2.0

source

crop

pad



SN Computer Science            (2023) 4:48  Page 7 of 16    48 

SN Computer Science

interpret a set of images as samples from a probability dis-
tribution. Thus, Fréchet Distance can be used to approximate 
the distance between two datasets, i.e., two sets of images 
that are sampled from different distributions. The central 
idea of FID is to measure this distance not in RGB-space but 
instead use a semantic representation from an intermediate 
layer of an Inceptionv3 [15] network trained on the Ima-
geNet [12] dataset. Note that quantitatively measuring the 
quality of a set of images as perceived by humans is inher-
ently hard and is the topic of ongoing research. However, at 
the time of writing, FID is the most common measurement 
for assessing generative models and has been shown to cor-
relate well with human perception. However, we want to 
clearly state that FID is not a metric. Due to the calculation 
of Fréchet Distance in the feature space of a deep network, 
it also highly depends on the data that was used for training 
this network, i.e., natural images from the ImageNet dataset. 
Thus, it is reasonable to assume that FID works best when 
assessing data that is similar to this dataset. Our dataset, 
similar to the ImageNet dataset, mostly shows a single object 
of interest and images are often captured in a natural envi-
ronment. However, we also have a lot of images with uni-
formly colored backgrounds as well as many urban scenes. 
Thus, this measurement cannot be perfect for assessing the 
quality of our generated images.

Fréchet Distance d(X, Y) between two one-dimensional 
distributions X and Y is defined as

where X and Y are univariate normal distributions. � and � 
are the mean and standard deviation of the respective dis-
tributions. Assuming that samples from X and Y are deep 
feature representations, we can calculate FID as the multi-
variate case of Eq. 2:

where ΣX and ΣY are the covariance matrices of X and Y. Tr 
is the trace, i.e., the sum of the diagonal values of a matrix. 
Note that 

√
Σ refers to the matrix square root of Σ

Although Eq. 3 is equivalent to Eq. 4, the second is the com-
mon formulation in literature because it requires less com-
putation. Note that FID has various shortcomings. First, we 
have to assume that both X and Y are normal distributions. 
This is most likely not correct. However, by calculating fea-
ture statistics like mean and covariance, we effectively fit a 
normal distribution to our data. Thus, at the very least, we 
have to assume that this distribution is a proper approxima-
tion for the actual distributions X and Y. Second, Chong and 

(2)d(X, Y) = (�X − �Y )
2 + (�X − �Y )

2,

(3)FID(X, Y) = �����X − �Y
�
�
�
�
2
+ Tr

��√
ΣX −

√
ΣY

�2
�

,

(4)FID(X, Y) = �����X − �Y
����
2
+ Tr

�
ΣX + ΣY − 2

√
ΣXΣY

�
.

Forsyth [16] empirically found that FID linearly depends on 
the sample size. As a result, FID scores are not comparable 
across sample sizes as well as across different image resolu-
tions. Our simple solution is to always calculate FID with 
images on a fixed resolution of 256 × 256 pixels. We com-
pare image sets that each consist of 50,000 images. In the 
following, we will simply refer to this measure as FID50k.

Conditioning

In this section, we discuss measuring the realization of our 
specifications in the generated images, i.e., how accurate is 
the generative model in generating images that comply with 
our specifications.

Conditioning Accuracy In order to measure compliance 
with our specifications, we define the conditioning accuracy 
(CA). With CA, we implement a quantitative method that 
allows us to look and rate the generated images from a speci-
fication standpoint. We achieve this by learning a simple 
CNN with the target of classifying images into our various 
annotations. This can be achieved in a straight forward fash-
ion by training on the annotated data from our dataset. We 
then use the resulting model to assess the generated images. 
If a generated image complies with our specification, then 
the classification model should simply output our specifi-
cation. In case, the generated image does not comply with 
our specification, the output of our classification model will 
be different from our specification. CA is then simply the 
accuracy of the classification model. In order to rely on this 
metric, we have to assume that the classification model is 
sufficiently good in its task of classifying images according 
to our annotations. If this is the case, CA, which we compute 
as the accuracy of the generative model in combination with 
the classification model, now mainly depends on the con-
tents of the generated images. In order to capture all possible 
specifications as defined in our dataset, we train individual1 
classifiers for each of the annotations, i.e., body color, car 
manufacturer, car model, rotation, body style, background 
scenery, and image aspect ratio.

Conditioning Consistency When considering a series 
of images on a predefined interpolation path, we often 
aim to only alter a single specification. Typically, this is 
the rotation of a car. In that case, we expect that this is 
the only aspect that changes in the images. To capture 
this, we again use the trained classifiers from the previous 
paragraph. However, instead of calculating the accuracy, 
we capture the consistency of all unchanged specifications. 
We do this by measuring the standard deviation � of the 
output of the classifiers that we learned for CA across 

1 We also learned a single classifier for all annotations which, how-
ever, was inferior to multiple individual classifiers.
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individual interpolation paths and then average standard 
deviations across multiple interpolation paths.

Random Rotations and Latent Space Interpolation

In this section, we describe metrics suitable for the evalu-
ation of mixed conditions. Mixed conditions, in our sense, 
are intermediate target labels that do not exist in the anno-
tations of our dataset. However, due to the nature of our 
generative model, we can still input such intermediate 
specifications. This can be useful for multiple purposes. 
First, we can generate images with unseen specifications, 
e.g., generate a convertible version of a car model that is 
not available as a convertible. Second, we can interpolate 
between different specifications, e.g., interpolate from an 
off-road vehicle to a convertible. Similarly, we can inter-
polate between the discrete object rotation annotations 
in our dataset to create a complete series of images that 
shows a full rotation cycle of a car.

FID for Random Rotations When rotating objects, we 
expect the generated images to maintain high image qual-
ity. In "Image Quality", we already discussed FID as a 
metric for image quality. Applying FID to rotated objects 
in images is just as reasonable as calculating it on images 
that are generated with our quantized rotation conditions 
that we draw from the dataset. However, intermediate 
rotations between these quantizations do not exist in our 
dataset. As such, we expect image quality to be worse than 
on standard conditions. In order to capture this effect, we 
calculate FID with random rotations separately from the 
standard FID. Here, we draw conditions randomly from 
our dataset. Given such a set of conditions, we then choose 
a target rotation randomly. We then calculate FID between 
our dataset and a set of images generated with random 
target rotations.

Learned Perceptual Image Patch Similarity  (LPIPS) 
LPIPS [17] is a measurement for image patch similarity. It 
is calculated as a weighted distance between deep features 
for individual image patches. The distances of the patches 
are then used to learn a small neural network that maps them 
to a single value. In The Unreasonable Effectiveness of Deep 
Features as a Perceptual Metric the creators of learned per-
ceptual image patch similarity (LPIPS) show that such a 
metric consistently outperforms traditional measures like the 
structural similarity index measure (SSIM) and L2-Distance 
in estimating the perceived distance of image patches. Note 
that patch similarity can be trivially applied to measure 
image similarity by simply increasing patch size such that 
it matches the image size. In this case, LPIPS between two 
images x1 and x2 can be calculated as

where yl
1
 and yl

2
 are the deep feature representations of x1 

and x2 respectively after layer l. Hl and Wl represent the 
spatial dimensions of the representations after layer l. wl 
is a layer-wise scaling factor for individual representations. 
Based on the distances, Zhang et al. then supervise a small 
network that is supposed to replicate human perception of 
image patch similarity. To learn this network, they collect a 
dataset that is composed of triplets of images. Each triplet 
consists of a reference image as well as two distorted ver-
sions of this image. They then ask humans to decide which 
of the distortions is more similar to the reference image. 
The distortions are sampled from a wide variety of tradi-
tional distortions that include photometric changes to image 
colors as well as noise and blur distortions. Other distortions 
include spatial changes like affine transformations as well 
as JPEG compression artifacts. A second set of distortions 
is sampled from various CNN-based methods in order to 
include typical artifacts generated by common CNNs. The 
metric learning task is then modeled as a binary classifica-
tion problem where similar patches are supposed to result 
in a distance of zero and dissimilar patches are supposed to 
result in a distance of one. They show that such a learned 
metric correlates very well with human perception of image 
distance.

Perceptual Path Smoothness (PPS) When rotating objects, 
we aim for a rotation that is as smooth as possible, i.e., each 
fixed size interpolation step in the latent space should result 
in a constant rotation of the object in the image. To better 
capture this effect, we define the perceptual path smoothness 
(PPS) sZ:

that measures variance along interpolation paths. Note that 
PPS is based on the learned LPIPS metric, i.e., like FID 
and various other measurements, both are just approximate 
indicators of generator performance and need to be consid-
ered in conjunction with other metrics as well as qualitative 
analysis. A downside of PPS is that rotation is not measured 
directly, but, instead it measures changes in the image. To 
at least partly overcome this issue, we only measure PPS 
on images that are generated with a constant black or white 
background. By this, we remove the dependency of PPS on 
background features.

Measuring Continuous 3D Rotation Note that rotation is 
just another label in our dataset. In this work, however, we 
specifically target good rotations. Thus, in addition to sim-
ply measuring rotations with CA. We explore an additional 
method that allows measuring of continuous rotation. In 3D 

(5)d(x1, x2) =
∑

l∈layers

1

HlWl

Hl,Wl∑

h,w

|
|
|
|
|
|
wl ⊙ (yl,h,w

1
− y
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2
)
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|

2

2
,

(6)sZ = �
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)
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)]
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Bounding Box Estimation Using Deep Learning and Geom-
etry [18], Mousavian et al. present a model that is capable 
of detecting 3D bounding boxes in two-dimensional images. 
Their model is learned on the KITTI [19] dataset which is a 
dataset of urban street scenes. The authors specifically target 
the detection of vehicles in those scenes. Using the resulting 
3D bounding boxes, it is possible to approximate an object’s 
rotation with respect to the camera. Note that, in theory, this 
requires a properly calibrated camera. However, we tested 
the algorithm on a small test set of our data and found that 
the object rotation estimates are very accurate. Note that we 
do not require high precision measurements for rotations 
and also do not expect to be able to generate objects that 
are precisely oriented in a specific angle. Instead, we only 
expect approximately correct orientations and continuous 
rotations. Given a series of images that show a full rota-
tion cycle, we use the estimated rotations to evaluate the 
generated rotations. Here, we calculate an average distance 
between our specification and the rotation estimated by the 
3D bounding box detector. Note that we found that the 3D 
bounding box detector often cannot distinguish between 
rotations that are 180◦ apart from each other. To mitigate 
the effects of these errors, we map all rotation estimates to a 
range between 0 ◦ and 179◦ . During qualitative analysis, we 
have never found an example in which our model confuses 
rotations. If we measure conditional rotation accuracy on 
the quantized rotations, all models consistently achieve an 
accuracy above 95% . Thus, we argue that such errors almost 
solely stem from the bounding box estimation, i.e., we get 
a better measurement of rotation quality by compensating 
for these errors.

Conditional Object Synthesis

In this work, we aim to generate a series of images. Each of 
these images is supposed to show the same car in the same 
scene. However, we want to control the orientation of the car 
in the series. In particular, a series of images is supposed to 
show a full continuous rotation cycle of the car.

Categorical Generator Conditioning

Conditioning the generator on the annotations from our 
dataset is relatively straight forward. We simply extend the 
latents z ∈ Z with the one-hot encoded conditions. However, 
our annotations are not independent, e.g., car manufacturer 
and car model are related. Thus, we cannot just draw random 
specifications during training. Instead, in order to get realis-
tic specifications, we draw them from our dataset. Learning a 
conditional generator means that the discriminator also needs 
to provide conditional training feedback. We adopt a class-
wise discrimination strategy, i.e., in addition to the standard 

GAN loss, we employ additional GAN losses that provide 
learning feedback for individual classes. We effectively ask 
the discriminator to distinguish between, e.g., real mercedes 
and fake mercedes or real countryside and fake countryside. 
We do this for all annotated classes and gate the gradient dur-
ing backpropagation such that only the relevant classes are 
considered. That is because the answer to real or fake mer-
cedes? is useless if the currently considered image displays a 
car from another manufacturer. Another issue is that our data is 
only sparsely annotated, i.e., for most images, we do not have 
all attributes annotated. Thus, our training procedure must be 
able to handle these sparse annotations. For one-hot encoded 
target specifications this can be achieved by simply feeding an 
all-zero vector to G when a certain attribute is not annotated 
and ignoring the respective outputs of D in the loss calcula-
tion for G and D, e.g., if we do not know whether the image is 
supposed to show a mercedes, asking whether it shows a real 
or fake mercedes is unreasonable. Thus, we simply do not ask. 
Let m(a, b) be a derivable distance metric between a and b. 
We give a general error function LD,gan for a discriminator D 
as well as a general error function LG,gan for a generator G in 
Eqs. 7 and  8, respectively:

Here, we use the standard sigmoid cross-entropy error for 
the distance metric m. We extent the general error functions 
from Eqs.  7 and 8 to error functions that are defined for all 
of our specifications. Let, yt

a
 be a target specification for a 

single attribute a, i.e., yt
a
 is a one-hot encoded target attrib-

ute, e.g., yt
color

 is a one-hot vector with 11 entries. Each of 
these entries corresponds to one of the possible target colors. 
An entry yt

a,c
 in yt

a
 equals one if we want the synthesized 

image to show the corresponding characteristic c. Otherwise 
yt
a,c

 is zero. yt then is a multi-hot vector that consists of the 
one-hot vectors that represent all individual attributes, i.e., 
yt is a representation of our specification. Similarly, y is a 
multi-hot representation of the annotation of a training sam-
ple � . Note that due to the sparse annotations in our dataset, 
individual components ya of y are not always one-hot vectors 
but may also be all-zero vectors. We define the class-wise 
loss LD,gan for discriminator D in Eq. 9 and the class-wise 
loss LG,gan for generator G in Eq. 10:

Here, i iterates all individual characteristics for all possible 
attributes in y and yt . Since y and yt are zero for all classes 
that are currently irrelevant, the gradient for these classes 

(7)L
D,gan = m(D(G(z)), 0) + m(D(�), 1),

(8)L
G,gan = m(D(G(z)), 1).

(9)L
D,gan

i
= m(D(G(z))i, 0) ⋅ y

t
i
+ m(D(�)i, 1) ⋅ yi

(10)L
G,gan

i
= m(D(G(z))i, 1) ⋅ y

t
i
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is also zero. The full adversarial loss for D and G then is 
simply the mean of all individual components of LD,gan 
and LG,gan respectively. This procedure is reasonable for all 
attributes except for the orientation annotations as we will 
discuss in the next section.

From Categorical Orientation to Continuous 
Rotation

The input of the convolutional stream of StyleGAN2 is a 
constant. Thus, as we already discussed in "StyleGAN2", 
the dense stream controls the output of the generator. 
Conditioning the generator of StyleGAN2 can be trivially 
achieved by stacking a multi-hot encoded representation 
of the categorical specifications to the input of the dense 
stream, i.e., by extending the style with the desired speci-
fications. However, even though we only annotated cate-
gorical rotations in our dataset, we still aim for continuous 
rotation. Rotation, by definition, is inherently continuous 
as well as periodic, i.e., an angle � ∈ [0◦;360◦] is continu-
ously defined and � = � + 360◦∀� ∈ ℝ . This behavior is 
perfectly implemented by both the sine and the cosine func-
tion, i.e., sin � = sin (� + 360◦) and cos � = cos (� + 360◦) . 
However, both sine and cosine do not result in distinct val-
ues for individual angles � , e.g., sin 45◦ = sin 135◦ . Thus, 
we cannot simply use one or the other, but instead, need to 
encode the orientation by both sine and cosine of the angle 
� to resolve these ambiguities. Such a formulation explicitly 
encodes continuity and periodicity of rotations and thus, in 
theory, should be superior to a categorical representation 
of rotations. In order to proof this theory, we conduct two 
experiments. First, we train a simple deep classifier on the 
categorical rotations. Second, we train a regression model 
with identical network architecture on the continuously 
encoded rotations. For both models, we measure classifica-
tion accuracy. This can be trivially computed for the classifi-
cation model. For the regression model, we simply quantize 

each rotation estimate to the nearest categorical label. Both 
models use our discriminator architecture which additionally 
allows us to verify that the rotation target can be properly 
learned by it. This is obviously important because the dis-
criminator creates the supervisory signal for learning the 
generator during training. Figure 7 visualizes validation per-
formance of both models. We see that the regression model 
outperforms the classification model by approximately one 
accuracy point which equates to a 19% relative reduction in 
classification error. In addition, it seems to be less prone to 
overfitting as the validation performance towards the end of 
the training does not drop as fast as with the classification 
model.

In summary, using a continuous representation for object 
rotations seems to be advantageous as it explicitly encodes 
the natural ordering and periodicity of rotations. In addition, 
it is easier to learn for our discriminator. Thus, we opt for 
such a continuous representation throughout all experiments.

A continuous representation of rotations, however, can-
not be learned in a standard adversarial setting, because 
it is unclear how to differentiate between real continuous 
rotations and fake continuous rotations in the discriminator. 
However, in an adversarial setting, we can see the genera-
tor as a model that strives to produce images that produce a 
specific output in the discriminator. Thus, we define a loss 
function for the generator that fulfills this requirement.

Given a target rotation label yf ,rot and latents z ∈ Z , we 
calculate the rotation error LG,rot for generator G as

where i ∈ {0;1} iterates the two regression targets (sine and 
cosine) and the corresponding outputs of discriminator D, 
i.e., given a target rotation, we aim to produce an image 
for which the discriminator confirms this rotation. LG,rot , 
however, is only useful if the discriminator is actually able 

(11)L
G,rot =

∑

i

||
|
||
|
y
f ,rot

i
− D(G(y

f ,rot

i
, z))i

||
|
||
|

2

2
,

Fig. 7  Left: the combination of sine and cosine yields a unique tuple 
representation for all possible angles. Right: learning orientation with 
a regression model (continuous) actually improves performance when 

compared to a classification model trained on categorical annotations. 
Maximum performance for each model is highlighted by the dashed 
lines
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to properly estimate object rotation. This can be learned on 
the real data. Given a real image xr and corresponding rota-
tion ground truth yr,rot , we define the rotation loss LD,rot for 
discriminator D as

Again, orientation is not annotated for all images. Thus, in 
such cases, similarly to the categorical attributes, we set both 
sine and cosine inputs of G to zero and ignore the rotation 
in the loss calculation for G and D. Here it is important to 
choose a distinct combination of sine and cosine values that 
cannot conflict with any annotated orientations. Setting both 
to zero satisfies this requirement as none of the possible 
rotation angles � can result in both sin � = 0 and cos � = 0.

Semi‑supervised Cooperative Rotation Learning

Our dataset only labels quantized rotations, i.e., rotations 
have been quantized to the nearest 45◦ . While this makes 
the annotation process easy and even feasible at all, it 
results in two issues. First, multiple different rotations get 
quantized to the same orientation, i.e., we do not know 
the exact rotation. Second, there are no annotated images 
for intermediate rotations. The first issue can be solved 
by simply not requiring exact regression values. This 
is already implemented by the squared error in Eqs. 11 
and 12 because the gradient of the squared error func-
tion diminishes when the rotation output is close to the 
desired target rotation, i.e., the impact on the overall error 
is lower the closer we are to the target rotation. Thus, 
estimated rotations only need to be in close vicinity to 
the quantized target rotation.

For the second issue, we exploit the natural order of 
our continuous rotation representation. Given that the 
input to our generator can be any rotation angle, we 
simply let it generate intermediate rotations. In order to 
properly estimate the rotation in a generated image that 
shows such an intermediate rotation angle, we need the 
discriminator to also learn those rotations, i.e., we can 
keep the loss formulations given in Eqs. 11 and 12 and 
add an additional rotation loss LD,semi that learns rotation 
from the generated fake images, i.e.,

where we randomize yf ,rot in 20% of the cases by sampling 
a random angle between 0 ◦ and 359◦ . We do the same for 
L
G,rot . As a result, for unlabeled intermediate angles, both 

networks learn to agree on a specific object rotation.

(12)L
D,rot =

∑

i

|
|
|
|
|
|
y
r,rot

i
− D(xr)i

|
|
|
|
|
|

2

2

(13)L
D,semi =

∑

i
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|
y
f ,rot

i
− D(G(y
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i
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|
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2
,

Empirical Loss Scheduling

In preliminary experiments, a common issue was that the gen-
erator did not learn to create full rotation cycles, i.e., between 
some of the annotated 45◦ steps the car would collapse and 
then, from the collapsed image, an image that shows a car 
close to the next step would arise. We have also found that 
rotation is learned very early in the training. While the rota-
tions become smoother and cleaner when training progresses, 
the generator never recovers from fundamental issues like col-
lapsing cars and orientations that are fundamentally wrong. 
This observation is consistent with the findings of Karras et 
al. [1] who also observed that the fundamental composition of 
the generated images, i.e., the low frequency parts, are learned 
very early. Given these observations, we conclude that we need 
to enforce the learning of rotations early. However, learning 
our model is driven by multiple losses. Here, we will first dis-
cuss the discriminator loss:

which is a combination of many losses that need to be bal-
anced properly. Here, � gives the weight of the individual 
losses. Note that it is the knowledge of the discriminator D 
that drives the learning of the generator G. Thus, before G is 
able to learn about rotations, we require it to have rudimen-
tary image generation capabilities, i.e., in the very begin-
ning, learning has to be driven by the GAN-Loss Lgan . How-
ever, once G is capable of the aforementioned rudimentary 
image generation, G needs to learn rotation. Thus, we reduce 
�gan and simultaneously increase rotational learning for G. 
Note that D learns rotation from real images from the very 
beginning (see Eq. 19). Finally, when G has learned to cre-
ate properly oriented objects, we can scale �gan back up and 
learn to improve image quality. This intuition results in the 
following schedule for �gan . At the current training progress 
i as measured by the number of thousands of images seen 
by the discriminator, i.e., i = 1 after having seen a thousand 
images, we calculate �gan(i) as a combination of two func-
tions as given below. Here, �(i) is a mixing function for the 
two components �(i) and �(i):

where � is the sigmoid function. � is an approximate offset 
at which �(i) begins to dominate the expression. �� and �� 
control the steepness of the two functions and � controls the 
width of the valley at the intersection between �(i) and �(i) . 

(14)L
D = �D,ganLD,gan + �D,rotLD,rot + �D,semi

L
D,semi

(15)�(i) = �

(
10.0

�
(i − �)

)

,

(16)�(i) = �(��(−i + �),

(17)�(i) = �(��(i − � − �)),
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Given the two individual functions �(i) and �(i) as well as 
the mixing function �(i) and desired minimal value �gan and 
desired maximum value �gan , we calculate

We set � = 400 , �� = 0.004 , �� = 0.003 , � = 1500 , 
�gan = 0.5 and �gan = 10.0 which results in the loss schedule 
shown in orange color in Fig. 8. Note that this schedule is 
identical for both the generator G as well as the discrimina-
tor D.

As mentioned above, D learns rotation from real images 
from the very beginning. However, as G begins to learn 
the quantized rotations that are annotated in our dataset, 
we need to reduce the importance of this loss in order to 
facilitate the learning of intermediate and continuous rota-
tions by semi-supervision. The schedule

results in the dashed gray schedule shown in Fig. 8. Here, 
we set �D,rot = 1500 , �D,rot = 5.0 and �D,rot = 20.0 , i.e., �D,rot 
starts at a high value of 20 and then decays to 5 after 1.5 
million training images.

Similarly, we define

 We set �D,semi = 1500 , �D,semi = 10.0 , �D,semi = 20.0 
and �D,semi = 0.1 which results in the green loss schedule 
shown in Fig. 8. In the beginning, G is not able to produce 

(18)
�gan(i) = (�gan − �gan)[(1.0 − �(i))�(i) + (�(i)�(i))] + �gan.

(19)�D,rot = min

(

max(
�D,rot�D,rot

i + 1
, �D,rot), �D,rot

)

(20)

�D,semi = min

(

max(
�D,semi�D,semi

i + 1
, �D,semi), �D,semi, i�D,semi

)

.

anything meaningful. Learning rotation from the early 
images produced by G hampers the training. Thus, with 
increasing image quality, we scale up the impact of the 
semi-supervision for D. After some time, both G and D 
have agreed on the intermediate rotations which allows us 
to reduce �D,semi towards the later parts of the training and 
thus, allow for a higher importance of the GAN training.

Similarly to LD , the generator loss LG is a combination 
of a GAN-Loss LG,gan and the rotation-based loss LG,rot ).

�G,gan follows the schedule given in Eq. 18. In the beginning, 
G cannot learn proper rotations from D because D needs to 
learn that first. Thus, with increased rotational knowledge 
of D, we can scale up rotational learning in G. However, G 
can learn to create continuous rotations because its learning 
of rotation does not depend on the quantized annotations of 
our dataset. Instead, G learns from D. Thus, we do not need 
to reduce �G,rot towards the end of the training. We calculate 
�G,rot as

Here, we set �G,rot = 20.0 , �G,rot = 0.2 which results in the 
dotted loss schedule shown in Fig. 8.

Results

In this section, we detail and discuss our results both quan-
titatively as well as qualitatively.

(21)L
G = �G,ganLG,gan + �G,rotLG,rot

,

(22)�G,rot = min(i ∗ �G,rot , �G,rot ).

Fig. 8  Loss schedules for semi-supervised rotation estimation and 
rotation generation. In the beginning, it is important facilitate image 
generation, i.e., we need high �gan . Simultaneously, D needs to learn 
rotation, i.e., we need high �D,rot in the beginning. We need to enforce 
proper rotation in G throughout the training, i.e., we need a high �G,rot 
at all times. In the beginning, learning in a semi-supervised fashion 
hampers the training progress because G only produces random noise 

images, i.e., trying to estimate rotation from such images is pointless. 
However, fundamental image composition that includes rotation is 
learned very early, thus we need to increase �D,semi fast and decrease 
�gan until rotations are learned properly. After rotation is learned, 
we can reduce rotation learning in D and increase importance of the 
GAN training to improve image quality
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Quantitative Results

In Table 1, we give quantitative results for image quality. 
Here, it is important to compare models at identical reso-
lutions. For this work, we chose to compare models at an 
image size of 256 × 256 pixels. In addition, we present 
results of our full model at a higher resolution of 512 × 512 
pixels that improves image quality. We see that both our 
semi-supervised rotation objective as well as our class-wise 
discrimination strategy improve image quality as measured 
by FID. Both also improve image quality for random rota-
tions. However, our rotational measures generally seem to 
decrease with improved image quality. The negative effects 
however are marginal and we were not able to verify them 
qualitatively. Moreover, without our semi-supervised objec-
tive, objects frequently collapsed during a rotation cycle. 
Unfortunately, this is an effect that does not seem to be cap-
tured by the rotational measurements. It may be the reason 
for the considerable improvements in the FID50k random 
rotation measure. The improvements in overall image qual-
ity are immediately obvious in qualitative comparisons.

In Table 2, we show that our method generally adheres 
to our specifications. Note that accuracy values generally 
should be considered with the number of possible classes 

in mind, i.e., a higher number of possibilities for a spe-
cific attribute naturally reduces accuracy. In other words, 
both the generative model and the classifier that we trained 
to assess the generated images generally have to solve a 
harder task when compared to attributes with a low num-
ber of classes. In addition, note that due to the nature of 
our measurements that use imperfect classifiers to assess 
the attributes of the generated objects small changes by 
a few percent cannot be indicative of relevant improve-
ments. As such, we consider the conditioning accuracy 
for the attributes car model (67 classes), body style (10 
classes), and aspect ratio (5 classes) to be almost identical 
across all methods that we analyzed. However, we see a 
significant improvement of around 7.1 absolute percentage 
points for the manufacturer (18 classes). This is equivalent 
to a 23% reduction in the conditioning error. On the other 
hand, simultaneously, we observe that color accuracy is 
reduced by 5.4% and background accuracy is reduced by 
7.5%. The consistency measurements in Table 3 paint a 
similar picture. Here background consistency and aspect 
ratio consistency during rotation decreased with our full 
method. We also see a small reduction in color consist-
ency. However, all other consistency measures improve 
considerably with our full model which matches our 

Table 1  Quantitative results for image quality

Starting with a baseline model that uses StyleGAN2’s standard loss definition and our rotation target (top) we improve by adding semi-super-
vision to the rotation training. Changing StyleGAN2’s standard loss to our class-wise discrimination strategy improves the model even further. 
Bottom: our model trained on a higher resolution
Bold means best for given resolution (“Train res”)

Model #train img (m) Train res ↓FID50k ↓FID50k random 
rotation

↑quantized rota-
tion acc (%)

↓avg. rotation 
distance

↓PPS

Coop. 5 256 7.27 7.46 99.8 19.23◦ 0.0069
Coop. + semi 5 256 5.70 6.76 98.5 18.71◦ 0.0113
Coop. + semi + class D 5 256 5.43 6.27 96.7 21.48◦ 0.0099
Coop. + semi + class D 5 m 512 5.15 5.40 96.3 22.70◦ 0.0087
Coop. + semi + class D 18 m 512 3.53 3.64 93.33 23.93◦ 0.0101

Table 2  Quantitative results for conditioning accuracy

Higher values correspond to a higher level of control, i.e., higher accuracies mean that a model better adheres to our specifications
Bold means best for given resolution (“Train res”)

Model #train img (m) Train res ↑model (%) ↑manufacturer 
(%)

↑color (%) ↑body (%) ↑background (%) ↑ratio (%)

Coop. 5 256 48.05 70.09 69.96 79.06 90.92 99.31
Coop. + semi 5 256 52.26 73.74 68.83 78.32 89.92 98.61
Coop. + semi + class D 5 256 47.81 77.25 64.60 78.36 83.46 97.81
Coop. + semi + class D 5 512 46.99 78.15 57.62 78.65 83.84 94.97
Coop. + semi + class D 18 512 71.62 90.55 66.33 78.94 86.71 97.61
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Table 3  Quantitative results for conditioning consistency, i.e., classifier standard deviation for rotating objects

Lower values mean that objects are rendered more consistently when undergoing rotations
Bold means best for given resolution (“Train res”)

Model #train img train res ↓model ↓manufacturer ↓color ↓body ↓background ↓ratio

Coop. 5m 256 0.01915 0.03834 0.0391 0.0617 0.03609 0.00411
Coop. + semi 5m 256 0.01911 0.04552 0.03567 0.06981 0.04480 0.01727
Coop. + semi + class D 5m 256 0.01590 0.03240 0.04031 0.04945 0.04458 0.01163
Coop. + semi + class D 5m 512 0.01460 0.03089 0.04029 0.04739 0.04350 0.01961
Coop. + semi + class D 18m 512 0.01097 0.02159 0.03645 0.04234 0.04175 0.01454

Fig. 9  Qualitative example for rotations under changing specifica-
tions. Each line shows a full rotation cycle. Top: initial image showing 
an Audi A3 hatchback in red on a black background. Upper middle: 
initial image with body style changed from hatchback to convertible. 

Lower middle: convertible with body color changed from red to black. 
Bottom: black convertible with background scenery changed from 
black to countryside

Audi A3

Convertible

Black

Countryside

Fig. 10  Qualitative examples 
for mixed conditions that are 
not in the dataset, i.e., out-of-
sample results

mercedes
panamera coupé

cadillac cayenne
black

cadillac cayenne
white

dodge challeger
pickup

ferrari duster
pickup

ferrari cayenne
limousine

fiat challenger
pickup

goggomobil a1
hatchback
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qualitative observations the we will further discuss in the 
next section.

Qualitative Results

In Fig. 9, we show examples of generated rotation cycles. 
We showcase control by changing individual attributes. 
The first row shows an initial image series. The second row 
shows the same series with the body style of the car changed 
to convertible. In the next row, we change the color of the 
convertible from red to black. Here, we can also observe 
a very common case of failure. The body color does not 
remain constant during the rotation cycle. This is a common 
problem when generating silver, gray and black cars. These 
colors seem to be particularly hard to differentiate and often 
get confused.

In the third row, we place the black convertible from the 
previous row in the country side. Here, we observe similar 
issues with the body color. However, the background scen-
ery is properly changed. In Fig. 10, we show out-of-sample 
results based on combinations of attributes that are not avail-
able in the training data.

Conclusion

In this work, we have proposed a method for control over 
image synthesis systems. Our method is able to handle data 
with multiple labels that is only sparsely annotated. We 
have also shown that, in an adversarial setting, a cooperative 
regression target that is jointly optimized by both generator 
and discriminator can be used for fine-grained and continu-
ous control of object orientation. We have shown that such a 
cooperative target can be learned in a semi-supervised fash-
ion which allows us to learn continuous orientations from 
quantized orientation annotations.
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