Real-time generation and adaptation of social companion robot behaviors
- Social robots will be part of our future homes. They will assist us in everyday tasks, entertain us, and provide helpful advice. However, the technology still faces challenges that must be overcome to equip the machine with social competencies and make it a socially intelligent and accepted housemate. An essential skill of every social robot is verbal and non-verbal communication. In contrast to voice assistants, smartphones, and smart home technology, which are already part of many people's lives today, social robots have an embodiment that raises expectations towards the machine. Their anthropomorphic or zoomorphic appearance suggests they can communicate naturally with speech, gestures, or facial expressions and understand corresponding human behaviors. In addition, robots also need to consider individual users' preferences: everybody is shaped by their culture, social norms, and life experiences, resulting in different expectations towards communication with aSocial robots will be part of our future homes. They will assist us in everyday tasks, entertain us, and provide helpful advice. However, the technology still faces challenges that must be overcome to equip the machine with social competencies and make it a socially intelligent and accepted housemate. An essential skill of every social robot is verbal and non-verbal communication. In contrast to voice assistants, smartphones, and smart home technology, which are already part of many people's lives today, social robots have an embodiment that raises expectations towards the machine. Their anthropomorphic or zoomorphic appearance suggests they can communicate naturally with speech, gestures, or facial expressions and understand corresponding human behaviors. In addition, robots also need to consider individual users' preferences: everybody is shaped by their culture, social norms, and life experiences, resulting in different expectations towards communication with a robot. However, robots do not have human intuition - they must be equipped with the corresponding algorithmic solutions to these problems. This thesis investigates the use of reinforcement learning to adapt the robot's verbal and non-verbal communication to the user's needs and preferences. Such non-functional adaptation of the robot's behaviors primarily aims to improve the user experience and the robot's perceived social intelligence. The literature has not yet provided a holistic view of the overall challenge: real-time adaptation requires control over the robot's multimodal behavior generation, an understanding of human feedback, and an algorithmic basis for machine learning. Thus, this thesis develops a conceptual framework for designing real-time non-functional social robot behavior adaptation with reinforcement learning. It provides a higher-level view from the system designer's perspective and guidance from the start to the end. It illustrates the process of modeling, simulating, and evaluating such adaptation processes. Specifically, it guides the integration of human feedback and social signals to equip the machine with social awareness. The conceptual framework is put into practice for several use cases, resulting in technical proofs of concept and research prototypes. They are evaluated in the lab and in in-situ studies. These approaches address typical activities in domestic environments, focussing on the robot's expression of personality, persona, politeness, and humor. Within this scope, the robot adapts its spoken utterances, prosody, and animations based on human explicit or implicit feedback.…
- Soziale Roboter werden Teil unseres zukünftigen Zuhauses sein. Sie werden uns bei alltäglichen Aufgaben unterstützen, uns unterhalten und uns mit hilfreichen Ratschlägen versorgen. Noch gibt es allerdings technische Herausforderungen, die zunächst überwunden werden müssen, um die Maschine mit sozialen Kompetenzen auszustatten und zu einem sozial intelligenten und akzeptierten Mitbewohner zu machen. Eine wesentliche Fähigkeit eines jeden sozialen Roboters ist die verbale und nonverbale Kommunikation. Im Gegensatz zu Sprachassistenten, Smartphones und Smart-Home-Technologien, die bereits heute Teil des Lebens vieler Menschen sind, haben soziale Roboter eine Verkörperung, die Erwartungen an die Maschine weckt. Ihr anthropomorphes oder zoomorphes Aussehen legt nahe, dass sie in der Lage sind, auf natürliche Weise mit Sprache, Gestik oder Mimik zu kommunizieren, aber auch entsprechende menschliche Kommunikation zu verstehen. Darüber hinaus müssen Roboter auch die individuellenSoziale Roboter werden Teil unseres zukünftigen Zuhauses sein. Sie werden uns bei alltäglichen Aufgaben unterstützen, uns unterhalten und uns mit hilfreichen Ratschlägen versorgen. Noch gibt es allerdings technische Herausforderungen, die zunächst überwunden werden müssen, um die Maschine mit sozialen Kompetenzen auszustatten und zu einem sozial intelligenten und akzeptierten Mitbewohner zu machen. Eine wesentliche Fähigkeit eines jeden sozialen Roboters ist die verbale und nonverbale Kommunikation. Im Gegensatz zu Sprachassistenten, Smartphones und Smart-Home-Technologien, die bereits heute Teil des Lebens vieler Menschen sind, haben soziale Roboter eine Verkörperung, die Erwartungen an die Maschine weckt. Ihr anthropomorphes oder zoomorphes Aussehen legt nahe, dass sie in der Lage sind, auf natürliche Weise mit Sprache, Gestik oder Mimik zu kommunizieren, aber auch entsprechende menschliche Kommunikation zu verstehen. Darüber hinaus müssen Roboter auch die individuellen Vorlieben der Benutzer berücksichtigen. So ist jeder Mensch von seiner Kultur, sozialen Normen und eigenen Lebenserfahrungen geprägt, was zu unterschiedlichen Erwartungen an die Kommunikation mit einem Roboter führt. Roboter haben jedoch keine menschliche Intuition - sie müssen mit entsprechenden Algorithmen für diese Probleme ausgestattet werden. In dieser Arbeit wird der Einsatz von bestärkendem Lernen untersucht, um die verbale und nonverbale Kommunikation des Roboters an die Bedürfnisse und Vorlieben des Benutzers anzupassen. Eine solche nicht-funktionale Anpassung des Roboterverhaltens zielt in erster Linie darauf ab, das Benutzererlebnis und die wahrgenommene soziale Intelligenz des Roboters zu verbessern. Die Literatur bietet bisher keine ganzheitliche Sicht auf diese Herausforderung: Echtzeitanpassung erfordert die Kontrolle über die multimodale Verhaltenserzeugung des Roboters, ein Verständnis des menschlichen Feedbacks und eine algorithmische Basis für maschinelles Lernen. Daher wird in dieser Arbeit ein konzeptioneller Rahmen für die Gestaltung von nicht-funktionaler Anpassung der Kommunikation sozialer Roboter mit bestärkendem Lernen entwickelt. Er bietet eine übergeordnete Sichtweise aus der Perspektive des Systemdesigners und eine Anleitung vom Anfang bis zum Ende. Er veranschaulicht den Prozess der Modellierung, Simulation und Evaluierung solcher Anpassungsprozesse. Insbesondere wird auf die Integration von menschlichem Feedback und sozialen Signalen eingegangen, um die Maschine mit sozialem Bewusstsein auszustatten. Der konzeptionelle Rahmen wird für mehrere Anwendungsfälle in die Praxis umgesetzt, was zu technischen Konzeptnachweisen und Forschungsprototypen führt, die in Labor- und In-situ-Studien evaluiert werden. Diese Ansätze befassen sich mit typischen Aktivitäten in häuslichen Umgebungen, wobei der Schwerpunkt auf dem Ausdruck der Persönlichkeit, dem Persona, der Höflichkeit und dem Humor des Roboters liegt. In diesem Rahmen passt der Roboter seine Sprache, Prosodie, und Animationen auf Basis expliziten oder impliziten menschlichen Feedbacks an.…
Author: | Hannes RitschelORCiDGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1003352 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/100335 |
Advisor: | Elisabeth André |
Type: | Doctoral Thesis |
Language: | English |
Year of first Publication: | 2022 |
Publishing Institution: | Universität Augsburg |
Granting Institution: | Universität Augsburg, Fakultät für Angewandte Informatik |
Date of final exam: | 2022/12/07 |
Release Date: | 2023/01/23 |
Tag: | Soziale Roboter |
GND-Keyword: | Bestärkendes Lernen; Künstliche Intelligenz; Roboter; Mensch-Maschine-Kommunikation; Maschinelles Lernen |
Pagenumber: | 306 |
Institutes: | Fakultät für Angewandte Informatik |
Fakultät für Angewandte Informatik / Institut für Informatik | |
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Menschzentrierte Künstliche Intelligenz | |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |
Licence (German): | Deutsches Urheberrecht mit Print on Demand |