Diffusion coefficient of a Brownian particle in equilibrium and nonequilibrium: Einstein model and beyond

  • The diffusion of small particles is omnipresent in many processes occurring in nature. As such, it is widely studied and exerted in almost all branches of sciences. It constitutes such a broad and often rather complex subject of exploration that we opt here to narrow our survey to the case of the diffusion coefficient for a Brownian particle that can be modeled in the framework of Langevin dynamics. Our main focus centers on the temperature dependence of the diffusion coefficient for several fundamental models of diverse physical systems. Starting out with diffusion in equilibrium for which the Einstein theory holds, we consider a number of physical situations outside of free Brownian motion and end by surveying nonequilibrium diffusion for a time-periodically driven Brownian particle dwelling randomly in a periodic potential. For this latter situation the diffusion coefficient exhibits an intriguingly non-monotonic dependence on temperature.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jakub SpiechowiczORCiD, Ivan G. MarchenkoORCiD, Peter HänggiORCiDGND, Jerzy ŁuczkaORCiD
URN:urn:nbn:de:bvb:384-opus4-1009386
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/100938
Parent Title (English):Entropy
Publisher:MDPI
Type:Article
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2023/01/12
Volume:25
Issue:1
First Page:42
DOI:https://doi.org/10.3390/e25010042
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Theoretische Physik I
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)