Meta-variational quantum eigensolver: learning energy profiles of parameterized Hamiltonians for quantum simulation

  • We present the meta-variational quantum eigensolver (VQE), an algorithm capable of learning the ground-state energy profile of a parameterized Hamiltonian. If the meta-VQE is trained with a few data points, it delivers an initial circuit parameterization that can be used to compute the ground-state energy of any parameterization of the Hamiltonian within a certain trust region. We test this algorithm with an XXZ spin chain, an electronic H4 Hamiltonian, and a single-transmon quantum simulation. In all cases, the meta-VQE is able to learn the shape of the energy functional and, in some cases, it results in improved accuracy in comparison with individual VQE optimization. The meta-VQE algorithm introduces both a gain in efficiency for parameterized Hamiltonians in terms of the number of optimizations and a good starting point for the quantum circuit parameters for individual optimizations. The proposed algorithm can be readily mixed with other improvements in the field of variationalWe present the meta-variational quantum eigensolver (VQE), an algorithm capable of learning the ground-state energy profile of a parameterized Hamiltonian. If the meta-VQE is trained with a few data points, it delivers an initial circuit parameterization that can be used to compute the ground-state energy of any parameterization of the Hamiltonian within a certain trust region. We test this algorithm with an XXZ spin chain, an electronic H4 Hamiltonian, and a single-transmon quantum simulation. In all cases, the meta-VQE is able to learn the shape of the energy functional and, in some cases, it results in improved accuracy in comparison with individual VQE optimization. The meta-VQE algorithm introduces both a gain in efficiency for parameterized Hamiltonians in terms of the number of optimizations and a good starting point for the quantum circuit parameters for individual optimizations. The proposed algorithm can be readily mixed with other improvements in the field of variational algorithms to shorten the distance between the current state of the art and applications with quantum advantage.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Alba Cervera-Lierta, Jakob S. KottmannORCiDGND, Alán Aspuru-Guzik
URN:urn:nbn:de:bvb:384-opus4-1019166
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/101916
ISSN:2691-3399OPAC
Parent Title (English):PRX Quantum
Publisher:American Physical Society (APS)
Place of publication:College Park, MD
Type:Article
Language:English
Year of first Publication:2021
Publishing Institution:Universität Augsburg
Release Date:2023/02/14
Tag:General Earth and Planetary Sciences; General Environmental Science
Volume:2
Issue:2
First Page:020329
DOI:https://doi.org/10.1103/prxquantum.2.020329
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Quantenalgorithmik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)