Preconditioning for a phase-field model with application to morphology evolution in organic semiconductors

  • The Cahn-Hilliard equations are a versatile model for describing the evolution of complex morphologies. In this paper we present a computational pipeline for the numerical solution of a ternary phase-field model for describing the nanomorphology of donor--acceptor semiconductor blends used in organic photovoltaic devices. The model consists of two coupled fourth-order partial differential equations that are discretized using a finite element approach. In order to solve the resulting large-scale linear systems efficiently, we propose a preconditioning strategy that is based on efficient approximations of the Schur-complement of a saddle point system. We show that this approach performs robustly with respect to variations in the discretization parameters. Finally, we outline that the computed morphologies can be used for the computation of charge generation, recombination, and transport in organic solar cells.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Kai Bergmann, Carsten Deibel, Roland Herzog, Roderick C. I. Mackenzie, Jan-Frederik PietschmannORCiDGND, Martin Stoll
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/102112
ISSN:1815-2406OPAC
Parent Title (English):Communications in Computational Physics
Publisher:Global Science Press
Type:Article
Language:English
Year of first Publication:2023
Release Date:2023/02/20
Volume:34
Issue:1
First Page:1
Last Page:17
DOI:https://doi.org/10.4208/cicp.OA-2022-0115
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Inverse Probleme