Line-search methods and rank increase on low-rank matrix varieties

  • Based on an explicit characterization of tangent cones one can devise line-search methods to minimize functions on the variety of matrices with rank bounded by some fixed value, thereby extending the Riemannian optimization techniques from the smooth manifold of fixed rank to its closure. This allows for a rank-adaptive optimization strategy where locally optimal solutions of some smaller rank are used as a starting point for an improved approximation with a larger rank. Contrary to optimization on the smooth manifold of fixed-rank matrices, no special treatment is needed for rankdeficient matrices when optimizing on the variety. Hence, this gives a sound theoretical framework for the analysis of rank-increasing greedy algorithms, which can be more effcient than starting the calculations with large but fixed rank.

Export metadata


Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Author:André UschmajewGND, Bart Vandereycken
Frontdoor URL
Parent Title (English):2014 International Symposium on Nonlinear Theory and its Applications (NOLTA2014), Luzern, Switzerland, September 14-18, 2014
Place of publication:Luzern
Type:Conference Proceeding
Year of first Publication:2014
Release Date:2023/03/27
First Page:52
Last Page:55
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Mathematical Data Science
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik