3D-printed microfluidic perfusion system for parallel monitoring of hydrogel-embedded cell cultures

  • The use of three-dimensional (3D) cell cultures has become increasingly popular in the contexts of drug discovery, disease modelling, and tissue engineering, as they aim to replicate in vivo-like conditions. To achieve this, new hydrogels are being developed to mimic the extracellular matrix. Testing the ability of these hydrogels is crucial, and the presented 3D-printed microfluidic perfusion system offers a novel solution for the parallel cultivation and evaluation of four separate 3D cell cultures. This system enables easy microscopic monitoring of the hydrogel-embedded cells and significantly reduces the required volumes of hydrogel and cell suspension. This cultivation device is comprised of two 3D-printed parts, which provide four cell-containing hydrogel chambers and the associated perfusion medium chambers. An interfacing porous membrane ensures a defined hydrogel thickness and prevents flow-induced hydrogel detachment. Integrated microfluidic channels connect the perfusionThe use of three-dimensional (3D) cell cultures has become increasingly popular in the contexts of drug discovery, disease modelling, and tissue engineering, as they aim to replicate in vivo-like conditions. To achieve this, new hydrogels are being developed to mimic the extracellular matrix. Testing the ability of these hydrogels is crucial, and the presented 3D-printed microfluidic perfusion system offers a novel solution for the parallel cultivation and evaluation of four separate 3D cell cultures. This system enables easy microscopic monitoring of the hydrogel-embedded cells and significantly reduces the required volumes of hydrogel and cell suspension. This cultivation device is comprised of two 3D-printed parts, which provide four cell-containing hydrogel chambers and the associated perfusion medium chambers. An interfacing porous membrane ensures a defined hydrogel thickness and prevents flow-induced hydrogel detachment. Integrated microfluidic channels connect the perfusion chambers to the overall perfusion system, which can be operated in a standard CO2-incubator. A 3D-printed adapter ensures the compatibility of the cultivation device with standard imaging systems. Cultivation and cell staining experiments with hydrogel-embedded murine fibroblasts confirmed that cell morphology, viability, and growth inside this cultivation device are comparable with those observed within standard 96-well plates. Due to the high degree of customization offered by additive manufacturing, this system has great potential to be used as a customizable platform for 3D cell culture applications.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Katharina V. MeyerORCiDGND, Steffen WinklerGND, Pascal Lienig, Gerald Dräger, Janina BahnemannORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1057985
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/105798
ISSN:2073-4409OPAC
Parent Title (English):Cells
Publisher:MDPI
Place of publication:Basel
Type:Article
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2023/07/10
Volume:12
Issue:14
First Page:1816
DOI:https://doi.org/10.3390/cells12141816
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Fakultätsübergreifende Institute und Einrichtungen
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Medizinische Fakultät
Medizinische Fakultät / Professur für Physiologie (Meissner)
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Professur für Biologie mit der Ausrichtung auf chipbasierte sensorische und analytische Methoden
Fakultätsübergreifende Institute und Einrichtungen / Zentrum für Advanced Analytics and Predictive Sciences (CAAPS)
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)