Establishment of a perfusion process with antibody-producing CHO cells using a 3D-printed microfluidic spiral separator with web-based flow control

  • Monoclonal antibodies are increasingly dominating the market for human therapeutic and diagnostic agents. For this reason, continuous methods—such as perfusion processes—are being explored and optimized in an ongoing effort to increase product yields. Unfortunately, many established cell retention devices—such as tangential flow filtration—rely on membranes that are prone to clogging, fouling, and undesirable product retention at high cell densities. To circumvent these problems, in this work, we have developed a 3D-printed microfluidic spiral separator for cell retention, which can readily be adapted and replaced according to process conditions (i.e., a plug-and-play system) due to the fast and flexible 3D printing technique. In addition, this system was also expanded to include automatic flushing, web-based control, and notification via a cellphone application. This set-up constitutes a proof of concept that was successful at inducing a stable process operation at a viable cellMonoclonal antibodies are increasingly dominating the market for human therapeutic and diagnostic agents. For this reason, continuous methods—such as perfusion processes—are being explored and optimized in an ongoing effort to increase product yields. Unfortunately, many established cell retention devices—such as tangential flow filtration—rely on membranes that are prone to clogging, fouling, and undesirable product retention at high cell densities. To circumvent these problems, in this work, we have developed a 3D-printed microfluidic spiral separator for cell retention, which can readily be adapted and replaced according to process conditions (i.e., a plug-and-play system) due to the fast and flexible 3D printing technique. In addition, this system was also expanded to include automatic flushing, web-based control, and notification via a cellphone application. This set-up constitutes a proof of concept that was successful at inducing a stable process operation at a viable cell concentration of 10–17 × 106 cells/mL in a hybrid mode (with alternating cell retention and cell bleed phases) while significantly reducing both shear stress and channel blockage. In addition to increasing efficiency to nearly 100%, this microfluidic device also improved production conditions by successfully separating dead cells and cell debris and increasing cell viability within the bioreactor.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jana Schellenberg, Michaela DehneGND, Ferdinand Lange, Thomas Scheper, Dörte Solle, Janina BahnemannORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1058646
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/105864
ISSN:2306-5354OPAC
Parent Title (English):Bioengineering
Publisher:MDPI AG
Type:Article
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2023/07/11
Tag:Bioengineering
Volume:10
Issue:6
First Page:656
DOI:https://doi.org/10.3390/bioengineering10060656
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Professur für Biologie mit der Ausrichtung auf chipbasierte sensorische und analytische Methoden
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)