Untersuchung einer Wasserstoff‐π Wechselwirkung in einem eingeschlossenen Wassermolekül im Festkörper

  • Der Nachweis und die Charakterisierung von eingeschlossenen Wassermolekülen in chemischen Gebilden und Biomakromolekülen ist weiterhin eine Herausforderung für feste Materialien. Wir präsentieren hier Protonen-detektierte Festkörper-Kernspinresonanzspektroskopie (NMR) Experimente bei Rotationsfrequenzen von 100 kHz um den magischen Winkel und bei hohen statischen Magnetfeldstärken (28.2 T), die den Nachweis eines einzelnen Wassermoleküls ermöglichen, das im Calix[4]aren-Hohlraum eines Lanthan-Komplexes durch eine Kombination von drei Arten nicht-kovalenter Wechselwirkungen fixiert ist. Die Protonenresonanzen des Wassers werden bei einer chemischen Verschiebung nahe Null ppm nachgewiesen, was wir durch quantenchemische Berechnungen bestätigen. Berechnungen mit der Dichtefunktionaltheorie zeigen, wie empfindlich der Wert der chemischen Verschiebung der Protonen auf Wasserstoff-π-Wechselwirkungen reagiert. Unsere Studie unterstreicht, wie sich die Protonen-detektierte Festkörper NMR zurDer Nachweis und die Charakterisierung von eingeschlossenen Wassermolekülen in chemischen Gebilden und Biomakromolekülen ist weiterhin eine Herausforderung für feste Materialien. Wir präsentieren hier Protonen-detektierte Festkörper-Kernspinresonanzspektroskopie (NMR) Experimente bei Rotationsfrequenzen von 100 kHz um den magischen Winkel und bei hohen statischen Magnetfeldstärken (28.2 T), die den Nachweis eines einzelnen Wassermoleküls ermöglichen, das im Calix[4]aren-Hohlraum eines Lanthan-Komplexes durch eine Kombination von drei Arten nicht-kovalenter Wechselwirkungen fixiert ist. Die Protonenresonanzen des Wassers werden bei einer chemischen Verschiebung nahe Null ppm nachgewiesen, was wir durch quantenchemische Berechnungen bestätigen. Berechnungen mit der Dichtefunktionaltheorie zeigen, wie empfindlich der Wert der chemischen Verschiebung der Protonen auf Wasserstoff-π-Wechselwirkungen reagiert. Unsere Studie unterstreicht, wie sich die Protonen-detektierte Festkörper NMR zur Methode der Wahl für die Untersuchung schwacher nicht-kovalenter Wechselwirkungen entwickelt, die einen ganzen Zweig molekularer Erkennungsvorgänge in der Chemie und Biologie bestimmen.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ettore Bartalucci, Alexander A. Malär, Anne Mehnert, Julius B. Kleine Büning, Lennart Günzel, Maik Icker, Martin Börner, Christian WiebelerORCiDGND, Beat H. Meier, Stefan Grimme, Berthold Kersting, Thomas Wiegand
URN:urn:nbn:de:bvb:384-opus4-1065145
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/106514
ISSN:0044-8249OPAC
ISSN:1521-3757OPAC
Parent Title (German):Angewandte Chemie
Publisher:Wiley
Place of publication:Weinheim
Type:Article
Language:German
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2023/08/04
Volume:135
Issue:14
First Page:e20221735
DOI:https://doi.org/10.1002/ange.202217725
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / AG Computergestützte Biologie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):CC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)