Collective excitations and supersolid behavior of bosonic atoms inside two crossed optical cavities

  • We discuss the nature of symmetry breaking and the associated collective excitations for a system of bosons coupled to the electromagnetic field of two optical cavities. For the specific configuration realized in a recent experiment at ETH [1, 2], we show that, in absence of direct intercavity scattering and for parameters chosen such that the atoms couple symmetrically to both cavities, the system possesses an approximate U(1) symmetry which holds asymptotically for vanishing cavity field intensity. It corresponds to the invariance with respect to redistributing the total intensity $I={I}_{1}+{I}_{2}$ between the two cavities. The spontaneous breaking of this symmetry gives rise to a broken continuous translation-invariance for the atoms, creating a supersolid-like order in the presence of a Bose–Einstein condensate. In particular, we show that atom-mediated scattering between the two cavities, which favors the state with equal light intensities ${I}_{1}={I}_{2}$ and reduces theWe discuss the nature of symmetry breaking and the associated collective excitations for a system of bosons coupled to the electromagnetic field of two optical cavities. For the specific configuration realized in a recent experiment at ETH [1, 2], we show that, in absence of direct intercavity scattering and for parameters chosen such that the atoms couple symmetrically to both cavities, the system possesses an approximate U(1) symmetry which holds asymptotically for vanishing cavity field intensity. It corresponds to the invariance with respect to redistributing the total intensity $I={I}_{1}+{I}_{2}$ between the two cavities. The spontaneous breaking of this symmetry gives rise to a broken continuous translation-invariance for the atoms, creating a supersolid-like order in the presence of a Bose–Einstein condensate. In particular, we show that atom-mediated scattering between the two cavities, which favors the state with equal light intensities ${I}_{1}={I}_{2}$ and reduces the symmetry to ${{\bf{Z}}}_{2}\otimes {{\bf{Z}}}_{2}$, gives rise to a finite value $\sim \sqrt{I}$ of the effective Goldstone mass. For strong atom driving, this low energy mode is clearly separated from an effective Higgs excitation associated with changes of the total intensity I. In addition, we compute the spectral distribution of the cavity light field and show that both the Higgs and Goldstone mode acquire a finite lifetime due to Landau damping at non-zero temperature.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:J. Lang, Francesco PiazzaORCiDGND, W. Zwerger
URN:urn:nbn:de:bvb:384-opus4-1083802
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/108380
ISSN:1367-2630OPAC
Parent Title (English):New Journal of Physics
Publisher:IOP Publishing
Type:Article
Language:English
Year of first Publication:2017
Publishing Institution:Universität Augsburg
Release Date:2023/10/16
Tag:General Physics and Astronomy
Volume:19
Issue:12
First Page:123027
DOI:https://doi.org/10.1088/1367-2630/aa9b4a
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Theoretische Physik III
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):CC-BY 3.0: Creative Commons - Namensnennung (mit Print on Demand)