Multipartite entanglement dynamics in a regular-to-ergodic transition: Quantum Fisher information approach

  • The characterization of entanglement is a central problem for the study of quantum many-body dynamics. Here, we propose the quantum Fisher information (QFI) as a useful tool for the study of multipartite-entanglement dynamics in many-body systems. We illustrate this by considering the regular-to-ergodic transition in the Dicke model—a fully connected spin model showing quantum thermalization above a critical interaction strength. We show that the QFI has a rich dynamical behavior which drastically changes across the transition. In particular, the asymptotic value of the QFI as well as its characteristic timescales witness the transition both through their dependence on the interaction strength and through the scaling with the system size. Since the QFI also sets the ultimate bound for the precision of parameter estimation, it provides a metrological perspective on the characterization of entanglement dynamics in many-body systems. Here, we show that quantum ergodic dynamics allows forThe characterization of entanglement is a central problem for the study of quantum many-body dynamics. Here, we propose the quantum Fisher information (QFI) as a useful tool for the study of multipartite-entanglement dynamics in many-body systems. We illustrate this by considering the regular-to-ergodic transition in the Dicke model—a fully connected spin model showing quantum thermalization above a critical interaction strength. We show that the QFI has a rich dynamical behavior which drastically changes across the transition. In particular, the asymptotic value of the QFI as well as its characteristic timescales witness the transition both through their dependence on the interaction strength and through the scaling with the system size. Since the QFI also sets the ultimate bound for the precision of parameter estimation, it provides a metrological perspective on the characterization of entanglement dynamics in many-body systems. Here, we show that quantum ergodic dynamics allows for a much faster production of metrologically useful states.show moreshow less

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Karol Gietka, Jan Chwedeńczuk, Tomasz Wasak, Francesco PiazzaORCiDGND
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/108387
ISSN:2469-9950OPAC
ISSN:2469-9969OPAC
Parent Title (English):Physical Review B
Publisher:American Physical Society (APS)
Type:Article
Language:English
Year of first Publication:2019
Release Date:2023/10/16
Volume:99
Issue:6
First Page:064303
DOI:https://doi.org/10.1103/physrevb.99.064303
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Theoretische Physik III