S. Mohanty, S. S. Islam, N. Winterhalter-Stocker, Anton Jesche, G. Simutis, Ch. Wang, Z. Guguchia, J. Sichelschmidt, M. Baenitz, Alexander A. Tsirlin, Philipp Gegenwart, R. Nath
- We delineate quantum magnetism in the strongly spin-orbit coupled distorted honeycomb lattice antiferromagnet BiYbGeO5. Our magnetization and heat capacity measurements reveal that its low-temperature behavior is well described by an effective Jeff=12 Kramers doublet of Yb3+. The ground state is nonmagnetic with a tiny spin gap. Temperature-dependent magnetic susceptibility, magnetization isotherm, and heat capacity can be modeled well assuming isolated spin dimers with anisotropic exchange interactions JZ≃2.6 K and JXY≃1.3 K. Heat capacity measurements backed by muon spin relaxation suggest the absence of magnetic long-range order down to at least 80 mK both in zero field and in applied fields. This sets BiYbGeO5 apart from Yb2Si2O7, with its unusual regime of magnon Bose-Einstein condensation, and suggests negligible interdimer couplings, despite only a weak structural deformation of the honeycomb lattice.