Towards understanding crossover for Cartesian Genetic Programming

  • Unlike in traditional Genetic Programming, Cartesian Genetic Programming (CGP) does not commonly feature a recombination/crossover operator, although recombination plays an important role in other evolutionary techniques, including Genetic Programming from which CGP originates. Instead, CGP mainly depends on mutation and selection operators in their evolutionary search. To this day, it is still unclear as to why CGP’s performance does not generally improve with the addition of crossover. In this work, we argue that CGP’s positional bias might be a reason for this phenomenon. This bias describes a skewed distribution of active and inactive nodes, which might lead to destructive behaviour of standard recombination operators. We provide a first assessment with preliminary results. No final conclusion to this hypothesis can be drawn yet, as more thorough evaluations must be done first. However, our first results show promising trends and may lay the foundationf or future work.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Henning CuiORCiDGND, Andreas MargrafORCiD, Michael HeiderORCiDGND, Jörg HähnerORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1093971
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/109397
ISBN:978-989-758-674-3OPAC
ISSN:2184-3236OPAC
Parent Title (English):Proceedings of the 15th International Joint Conference on Computational Intelligence - ECTA, November 13-15, 2023, in Rome, Italy
Publisher:SciTePress
Place of publication:Setúbal
Editor:Niki van Stein, Francesco Marcelloni, H. K. Lam, Marie Cottrell, Joaquim Filipe
Type:Conference Proceeding
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2023/11/22
GND-Keyword:Cartesian Genetic Programming; Crossover; Reorder; Evolutionary Algorithm
First Page:308
Last Page:314
DOI:https://doi.org/10.5220/0012231400003595
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Organic Computing
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)