Unsupervised learning universal critical behavior via the intrinsic dimension

  • The identification of universal properties from minimally processed data sets is one goal of machine learning techniques applied to statistical physics. Here, we study how the minimum number of variables needed to accurately describe the important features of a data set—the intrinsic dimension (Id)—behaves in the vicinity of phase transitions. We employ state-of-the-art nearest-neighbors-based Id estimators to compute the Id of raw Monte Carlo thermal configurations across different phase transitions: first-order, second-order, and Berezinskii-Kosterlitz-Thouless. For all the considered cases, we find that the Id uniquely characterizes the transition regime. The finite-size analysis of the Id allows us to not only identify critical points with an accuracy comparable to methods that rely on a priori identification of order parameters but also to determine the corresponding (critical) exponent ν in the case of continuous transitions. For the case of topological transitions, this analysisThe identification of universal properties from minimally processed data sets is one goal of machine learning techniques applied to statistical physics. Here, we study how the minimum number of variables needed to accurately describe the important features of a data set—the intrinsic dimension (Id)—behaves in the vicinity of phase transitions. We employ state-of-the-art nearest-neighbors-based Id estimators to compute the Id of raw Monte Carlo thermal configurations across different phase transitions: first-order, second-order, and Berezinskii-Kosterlitz-Thouless. For all the considered cases, we find that the Id uniquely characterizes the transition regime. The finite-size analysis of the Id allows us to not only identify critical points with an accuracy comparable to methods that rely on a priori identification of order parameters but also to determine the corresponding (critical) exponent ν in the case of continuous transitions. For the case of topological transitions, this analysis overcomes the reported limitations affecting other unsupervised learning methods. Our work reveals how raw data sets display unique signatures of universal behavior in the absence of any dimensional reduction scheme and suggest direct parallelism between conventional order parameters in real space and the intrinsic dimension in the data space.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Tiago Mendes-SantosORCiDGND, X. Turkeshi, M. Dalmonte, Alex Rodriguez
URN:urn:nbn:de:bvb:384-opus4-1095116
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/109511
ISSN:2160-3308OPAC
Parent Title (English):Physical Review X
Publisher:American Physical Society (APS)
Type:Article
Language:English
Year of first Publication:2021
Publishing Institution:Universität Augsburg
Release Date:2023/11/27
Tag:General Physics and Astronomy
Volume:11
Issue:1
First Page:011040
DOI:https://doi.org/10.1103/physrevx.11.011040
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Theoretische Physik III
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)