Clinical neurophysiological interrogation of motor slowing: a critical step towards tuning adaptive deep brain stimulation

  • Objective Subthalamic nucleus (STN) beta activity (13–30 Hz) is the most accepted biomarker for adaptive deep brain stimulation (aDBS) for Parkinson’s disease (PD). We hypothesize that different frequencies within the beta range may exhibit distinct temporal dynamics and, as a consequence, different relationships to motor slowing and adaptive stimulation patterns. We aim to highlight the need for an objective method to determine the aDBS feedback signal. Methods STN LFPs were recorded in 15 PD patients at rest and while performing a cued motor task. The impact of beta bursts on motor performance was assessed for different beta candidate frequencies: the individual frequency strongest associated with motor slowing, the individual beta peak frequency, the frequency most modulated by movement execution, as well as the entire-, low- and high beta band. How these candidate frequencies differed in their bursting dynamics and theoretical aDBS stimulation patterns was furtherObjective Subthalamic nucleus (STN) beta activity (13–30 Hz) is the most accepted biomarker for adaptive deep brain stimulation (aDBS) for Parkinson’s disease (PD). We hypothesize that different frequencies within the beta range may exhibit distinct temporal dynamics and, as a consequence, different relationships to motor slowing and adaptive stimulation patterns. We aim to highlight the need for an objective method to determine the aDBS feedback signal. Methods STN LFPs were recorded in 15 PD patients at rest and while performing a cued motor task. The impact of beta bursts on motor performance was assessed for different beta candidate frequencies: the individual frequency strongest associated with motor slowing, the individual beta peak frequency, the frequency most modulated by movement execution, as well as the entire-, low- and high beta band. How these candidate frequencies differed in their bursting dynamics and theoretical aDBS stimulation patterns was further investigated. Results The individual motor slowing frequency often differs from the individual beta peak or beta-related movement-modulation frequency. Minimal deviations from a selected target frequency as feedback signal for aDBS leads to a substantial drop in the burst overlapping and in the alignment of the theoretical onset of stimulation triggers (to ∼ 75% for 1 Hz, to ∼ 40% for 3 Hz deviation). Conclusions Clinical-temporal dynamics within the beta frequency range are highly diverse and deviating from a reference biomarker frequency can result in altered adaptive stimulation patterns. Significance A clinical-neurophysiological interrogation could be helpful to determine the patient-specific feedback signal for aDBS.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Laura Alva, Elena Bernasconi, Flavie Torrecillos, Petra Fischer, Alberto Averna, Manuel BangeGND, Abteen Mostofi, Alek Pogosyan, Keyoumars Ashkan, Muthuraman MuthuramanORCiDGND, Sergiu Groppa, Erlick A. Pereira, Huiling Tan, Gerd Tinkhauser
URN:urn:nbn:de:bvb:384-opus4-1096073
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/109607
ISSN:1388-2457OPAC
Parent Title (English):Clinical Neurophysiology
Publisher:Elsevier BV
Place of publication:Amsterdam
Type:Article
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2023/12/01
Tag:Physiology (medical); Neurology (clinical); Neurology; Sensory Systems
Volume:152
First Page:43
Last Page:56
DOI:https://doi.org/10.1016/j.clinph.2023.04.013
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Informatik in der Medizintechnik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)