Graph‐to‐local limit for a multi‐species nonlocal cross‐interaction system

  • In this note we continue the study of nonlocal interaction dynamics on a sequence of infinite graphs, extending the results of Esposito, Heinze and Schlichting to an arbitrary number of species. Our analysis relies on the observation that the graph dynamics form a gradient flow with respect to a non-symmetric Finslerian gradient structure. Keeping the nonlocal interaction energy fixed, while localizing the graph structure, we are able to prove evolutionary Γ-convergence to an Otto-Wassertein-type gradient flow with a tensor-weighted, yet symmetric, inner product. As a byproduct this implies the existence of solutions to the multi-species non-local (cross-)interaction system on the tensor-weighted Euclidean space.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Antonio Esposito, Georg Heinze, Jan‐Frederik PietschmannORCiDGND, André Schlichting
URN:urn:nbn:de:bvb:384-opus4-1097764
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/109776
ISSN:1617-7061OPAC
Parent Title (English):PAMM: Proceedings in Applied Mathematics and Mechanics
Publisher:Wiley
Place of publication:Weinheim
Type:Article
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2023/12/06
Volume:23
Issue:4
First Page:e202300094
DOI:https://doi.org/10.1002/pamm.202300094
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Inverse Probleme
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)