Manuela Cerina, Muthuraman Muthuraman, Marco Gallus, Nabin Koirala, Andre Dik, Lydia Wachsmuth, Petra Hundehege, Patrick Schiffler, Jan-Gerd Tenberge, Vinzenz Fleischer, Gabriel Gonzalez-Escamilla, Venu Narayanan, Julia Krämer, Cornelius Faber, Thomas Budde, Sergiu Groppa, Sven G. Meuth
- Background
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by inflammatory and neurodegenerative processes. Despite demyelination being a hallmark of the disease, how it relates to neurodegeneration has still not been completely unraveled, and research is still ongoing into how these processes can be tracked non-invasively. Magnetic resonance imaging (MRI) derived brain network characteristics, which closely mirror disease processes and relate to functional impairment, recently became important variables for characterizing immune-mediated neurodegeneration; however, their histopathological basis remains unclear.
Methods
In order to determine the MRI-derived correlates of myelin dynamics and to test if brain network characteristics derived from diffusion tensor imaging reflect microstructural tissue reorganization, we took advantage of the cuprizone model of general demyelination in mice and performed longitudinal histological andBackground
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by inflammatory and neurodegenerative processes. Despite demyelination being a hallmark of the disease, how it relates to neurodegeneration has still not been completely unraveled, and research is still ongoing into how these processes can be tracked non-invasively. Magnetic resonance imaging (MRI) derived brain network characteristics, which closely mirror disease processes and relate to functional impairment, recently became important variables for characterizing immune-mediated neurodegeneration; however, their histopathological basis remains unclear.
Methods
In order to determine the MRI-derived correlates of myelin dynamics and to test if brain network characteristics derived from diffusion tensor imaging reflect microstructural tissue reorganization, we took advantage of the cuprizone model of general demyelination in mice and performed longitudinal histological and imaging analyses with behavioral tests. By introducing cuprizone into the diet, we induced targeted and consistent demyelination of oligodendrocytes, over a period of 5 weeks. Subsequent myelin synthesis was enabled by reintroduction of normal food.
Results
Using specific immune-histological markers, we demonstrated that 2 weeks of cuprizone diet induced a 52% reduction of myelin content in the corpus callosum (CC) and a 35% reduction in the neocortex. An extended cuprizone diet increased myelin loss in the CC, while remyelination commenced in the neocortex. These histologically determined dynamics were reflected by MRI measurements from diffusion tensor imaging. Demyelination was associated with decreased fractional anisotropy (FA) values and increased modularity and clustering at the network level. MRI-derived modularization of the brain network and FA reduction in key anatomical regions, including the hippocampus, thalamus, and analyzed cortical areas, were closely related to impaired memory function and anxiety-like behavior.
Conclusion
Network-specific remyelination, shown by histology and MRI metrics, determined amelioration of functional performance and neuropsychiatric symptoms. Taken together, we illustrate the histological basis for the MRI-driven network responses to demyelination, where increased modularity leads to evolving damage and abnormal behavior in MS. Quantitative information about in vivo myelination processes is mirrored by diffusion-based imaging of microstructural integrity and network characteristics.…
MetadatenAuthor: | Manuela Cerina, Muthuraman MuthuramanORCiDGND, Marco Gallus, Nabin Koirala, Andre Dik, Lydia Wachsmuth, Petra Hundehege, Patrick Schiffler, Jan-Gerd Tenberge, Vinzenz Fleischer, Gabriel Gonzalez-Escamilla, Venu Narayanan, Julia Krämer, Cornelius Faber, Thomas Budde, Sergiu Groppa, Sven G. Meuth |
---|
URN: | urn:nbn:de:bvb:384-opus4-1098362 |
---|
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/109836 |
---|
ISSN: | 1742-2094OPAC |
---|
Parent Title (English): | Journal of Neuroinflammation |
---|
Publisher: | Springer Science and Business Media LLC |
---|
Place of publication: | Berlin |
---|
Type: | Article |
---|
Language: | English |
---|
Year of first Publication: | 2020 |
---|
Publishing Institution: | Universität Augsburg |
---|
Release Date: | 2023/12/07 |
---|
Tag: | Cellular and Molecular Neuroscience; Neurology; Immunology; General Neuroscience |
---|
Volume: | 17 |
---|
Issue: | 1 |
---|
First Page: | 186 |
---|
DOI: | https://doi.org/10.1186/s12974-020-01827-z |
---|
Institutes: | Fakultät für Angewandte Informatik |
---|
| Fakultät für Angewandte Informatik / Institut für Informatik |
---|
| Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Informatik in der Medizintechnik |
---|
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |
---|
Licence (German): | CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand) |
---|