Myelination- and immune-mediated MR-based brain network correlates

  • Background Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by inflammatory and neurodegenerative processes. Despite demyelination being a hallmark of the disease, how it relates to neurodegeneration has still not been completely unraveled, and research is still ongoing into how these processes can be tracked non-invasively. Magnetic resonance imaging (MRI) derived brain network characteristics, which closely mirror disease processes and relate to functional impairment, recently became important variables for characterizing immune-mediated neurodegeneration; however, their histopathological basis remains unclear. Methods In order to determine the MRI-derived correlates of myelin dynamics and to test if brain network characteristics derived from diffusion tensor imaging reflect microstructural tissue reorganization, we took advantage of the cuprizone model of general demyelination in mice and performed longitudinal histological andBackground Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by inflammatory and neurodegenerative processes. Despite demyelination being a hallmark of the disease, how it relates to neurodegeneration has still not been completely unraveled, and research is still ongoing into how these processes can be tracked non-invasively. Magnetic resonance imaging (MRI) derived brain network characteristics, which closely mirror disease processes and relate to functional impairment, recently became important variables for characterizing immune-mediated neurodegeneration; however, their histopathological basis remains unclear. Methods In order to determine the MRI-derived correlates of myelin dynamics and to test if brain network characteristics derived from diffusion tensor imaging reflect microstructural tissue reorganization, we took advantage of the cuprizone model of general demyelination in mice and performed longitudinal histological and imaging analyses with behavioral tests. By introducing cuprizone into the diet, we induced targeted and consistent demyelination of oligodendrocytes, over a period of 5 weeks. Subsequent myelin synthesis was enabled by reintroduction of normal food. Results Using specific immune-histological markers, we demonstrated that 2 weeks of cuprizone diet induced a 52% reduction of myelin content in the corpus callosum (CC) and a 35% reduction in the neocortex. An extended cuprizone diet increased myelin loss in the CC, while remyelination commenced in the neocortex. These histologically determined dynamics were reflected by MRI measurements from diffusion tensor imaging. Demyelination was associated with decreased fractional anisotropy (FA) values and increased modularity and clustering at the network level. MRI-derived modularization of the brain network and FA reduction in key anatomical regions, including the hippocampus, thalamus, and analyzed cortical areas, were closely related to impaired memory function and anxiety-like behavior. Conclusion Network-specific remyelination, shown by histology and MRI metrics, determined amelioration of functional performance and neuropsychiatric symptoms. Taken together, we illustrate the histological basis for the MRI-driven network responses to demyelination, where increased modularity leads to evolving damage and abnormal behavior in MS. Quantitative information about in vivo myelination processes is mirrored by diffusion-based imaging of microstructural integrity and network characteristics.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Manuela Cerina, Muthuraman MuthuramanORCiDGND, Marco Gallus, Nabin Koirala, Andre Dik, Lydia Wachsmuth, Petra Hundehege, Patrick Schiffler, Jan-Gerd Tenberge, Vinzenz Fleischer, Gabriel Gonzalez-Escamilla, Venu Narayanan, Julia Krämer, Cornelius Faber, Thomas Budde, Sergiu Groppa, Sven G. Meuth
URN:urn:nbn:de:bvb:384-opus4-1098362
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/109836
ISSN:1742-2094OPAC
Parent Title (English):Journal of Neuroinflammation
Publisher:Springer Science and Business Media LLC
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2020
Publishing Institution:Universität Augsburg
Release Date:2023/12/07
Tag:Cellular and Molecular Neuroscience; Neurology; Immunology; General Neuroscience
Volume:17
Issue:1
First Page:186
DOI:https://doi.org/10.1186/s12974-020-01827-z
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Informatik in der Medizintechnik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)