Neuronal networks in West syndrome as revealed by source analysis and renormalized partial directed coherence

  • West syndrome is a severe epileptic encephalopathy of infancy with a poor developmental outcome. This syndrome is associated with the pathognomonic EEG feature of hypsarrhythmia. The aim of the study was to describe neuronal networks underlying hypsarrhythmia using the source analysis method (dynamic imaging of coherent sources or DICS) which represents an inverse solution algorithm in the frequency domain. In order to investigate the interaction within the detected network, a renormalized partial directed coherence (RPDC) method was also applied as a measure of the directionality of information flow between the source signals. Both DICS and RPDC were performed for EEG delta activity (1–4 Hz) in eight patients with West syndrome and in eight patients with partial epilepsies (control group). The brain area with the strongest power in the given frequency range was defined as the reference region. The coherence between this reference region and the entire brain was computed using DICS.West syndrome is a severe epileptic encephalopathy of infancy with a poor developmental outcome. This syndrome is associated with the pathognomonic EEG feature of hypsarrhythmia. The aim of the study was to describe neuronal networks underlying hypsarrhythmia using the source analysis method (dynamic imaging of coherent sources or DICS) which represents an inverse solution algorithm in the frequency domain. In order to investigate the interaction within the detected network, a renormalized partial directed coherence (RPDC) method was also applied as a measure of the directionality of information flow between the source signals. Both DICS and RPDC were performed for EEG delta activity (1–4 Hz) in eight patients with West syndrome and in eight patients with partial epilepsies (control group). The brain area with the strongest power in the given frequency range was defined as the reference region. The coherence between this reference region and the entire brain was computed using DICS. After that, the RPDC was applied to the source signals estimated by DICS. The results of electrical source imaging were compared to results of a previous EEG-fMRI study which had been carried out using the same cohort of patients. As revealed by DICS, delta activity in hypsarrhythmia was associated with coherent sources in the occipital cortex (main source) as well as the parietal cortex, putamen, caudate nucleus and brainstem. In patients with partial epilepsies, delta activity could be attributed to sources in the occipital, parietal and sensory-motor cortex. In West syndrome, RPDC showed the strongest and most significant direction of ascending information flow from the brainstem towards the putamen and cerebral cortex. The neuronal network underlying hypsarrhythmia in this study resembles the network which was described in previous EEG-fMRI and PET studies with involvement of the brainstem, putamen and cortical regions in the generation of hypsarrhythmia. The RPDC suggests that brainstem could have a key role in the pathogenesis of West syndrome. This study supports the theory that hypsarrhythmia results from ascending brainstem pathways that project widely to basal ganglia and cerebral cortex.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Natia Japaridze, Muthuraman MuthuramanORCiDGND, Friederike Moeller, Rainer Boor, Abdul Rauf Anwar, Günther Deuschl, Urlich Stephani, Jan Raethjen, Michael Siniatchkin
URN:urn:nbn:de:bvb:384-opus4-1103480
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/110348
ISSN:0896-0267OPAC
ISSN:1573-6792OPAC
Parent Title (English):Brain Topography
Publisher:Springer Science and Business Media LLC
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2013
Publishing Institution:Universität Augsburg
Release Date:2023/12/20
Tag:Neurology (clinical); Neurology; Radiology, Nuclear Medicine and imaging; Radiological and Ultrasound Technology; Anatomy
Volume:26
Issue:1
First Page:157
Last Page:170
DOI:https://doi.org/10.1007/s10548-012-0245-y
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Informatik in der Medizintechnik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht