Learning linearized assignment flows for image labeling

  • We introduce a novel algorithm for estimating optimal parameters of linearized assignment flows for image labeling. An exact formula is derived for the parameter gradient of any loss function that is constrained by the linear system of ODEs determining the linearized assignment flow. We show how to efficiently evaluate this formula using a Krylov subspace and a low-rank approximation. This enables us to perform parameter learning by Riemannian gradient descent in the parameter space, without the need to backpropagate errors or to solve an adjoint equation. Experiments demonstrate that our method performs as good as highly-tuned machine learning software using automatic differentiation. Unlike methods employing automatic differentiation, our approach yields a low-dimensional representation of internal parameters and their dynamics which helps to understand how assignment flows and more generally neural networks work and perform.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Alexander Zeilmann, Stefania PetraORCiDGND, Christoph Schnörr
URN:urn:nbn:de:bvb:384-opus4-1105668
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/110566
ISSN:0924-9907OPAC
ISSN:1573-7683OPAC
Parent Title (English):Journal of Mathematical Imaging and Vision
Publisher:Springer
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2024/01/08
Tag:Applied Mathematics; Geometry and Topology; Computer Vision and Pattern Recognition; Condensed Matter Physics; Modeling and Simulation; Statistics and Probability
Volume:65
Issue:1
First Page:164
Last Page:184
DOI:https://doi.org/10.1007/s10851-022-01132-9
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Mathematische Bildverarbeitung
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)