DC-programming versus ℓ0-superiorization for discrete tomography

  • In this paper we focus on the reconstruction of sparse solutions to underdetermined systems of linear equations with variable bounds. The problem is motivated by sparse and gradient-sparse reconstruction in binary and discrete tomography from limited data. To address the ℓ0-minimization problem we consider two approaches: DC-programming and ℓ0-superiorization. We show that ℓ0-minimization over bounded polyhedra can be equivalently formulated as a DC program. Unfortunately, standard DC algorithms based on convex programming often get trapped in local minima. On the other hand, ℓ0-superiorization yields comparable results at significantly lower costs.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Aviv Gibali, Stefania PetraORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1106688
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/110668
ISSN:1844-0835OPAC
Parent Title (Romanian):Analele Universitatii "Ovidius" Constanta - Seria Matematica
Publisher:Walter de Gruyter
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2018
Publishing Institution:Universität Augsburg
Release Date:2024/01/08
Volume:26
Issue:2
First Page:105
Last Page:133
DOI:https://doi.org/10.2478/auom-2018-0021
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Mathematische Bildverarbeitung
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)