- We present a comprehensive study of structural and electronic properties of the adsorbate system H2-phthalocyanine (H2Pc) on Ag(111). A comparison with copper-phthalocyanine (CuPc) on Ag(111) allows us to elucidate the impact of the central metal atom in the molecule on the adsorbate-substrate interaction. This metal atom is one fundamental parameter which can be changed in order to modify the properties of phthalocyanine molecules, and therefore its influence on the adsorption behavior is highly relevant. From high-resolution electron diffraction, we obtained a phase diagram for submonolayer coverages which turns out to be similar to that of CuPc/Ag(111). The most striking difference is a higher stability of a commensurate phase, indicating a stronger and more adsorption site-specific bonding of the H2Pc molecules. Furthermore, ultraviolet photoelectron spectroscopy and x-ray standing waves prove chemisorptive interaction between molecules and substrate and a significant bending ofWe present a comprehensive study of structural and electronic properties of the adsorbate system H2-phthalocyanine (H2Pc) on Ag(111). A comparison with copper-phthalocyanine (CuPc) on Ag(111) allows us to elucidate the impact of the central metal atom in the molecule on the adsorbate-substrate interaction. This metal atom is one fundamental parameter which can be changed in order to modify the properties of phthalocyanine molecules, and therefore its influence on the adsorption behavior is highly relevant. From high-resolution electron diffraction, we obtained a phase diagram for submonolayer coverages which turns out to be similar to that of CuPc/Ag(111). The most striking difference is a higher stability of a commensurate phase, indicating a stronger and more adsorption site-specific bonding of the H2Pc molecules. Furthermore, ultraviolet photoelectron spectroscopy and x-ray standing waves prove chemisorptive interaction between molecules and substrate and a significant bending of the molecules with the nitrogen atoms approaching the surface. We conclude that the attractive interaction of metal-phthalocyanine molecules with Ag(111) is mainly mediated by the aromatic body of the molecule (the tetraazaporphyrin ring in particular) rather than by the central metallic atom which (in the case of CuPc) already shows Pauli repulsion.…