Electrostatic interaction and commensurate registry at the heteromolecular F16CuPc–CuPc interface

  • Tailoring the properties of molecular thin films and interfaces will have decisive influence on the success of future organic electronic devices. This is equally true for metal–organic and hetero–organic contacts as they occur, for example, in donor–acceptor systems. Here, we report on the structure formation and interaction across such a heteromolecular interface. It is formed by monolayers of F16CuPc and CuPc stacked on a Ag(111) surface. We investigated the lateral and vertical structure using spot-profile analysis low energy electron diffraction and normal incidence X-ray standing waves, and performed pair potential calculations to understand the driving forces for the structure formation. Most surprisingly, for one phase we found a commensurate registry between the two organic layers, usually a sign for a strong (chemisorptive) interaction often involving metallic states of the surface. However, because the organic bilayer is not commensurate with the underlying Ag substrate inTailoring the properties of molecular thin films and interfaces will have decisive influence on the success of future organic electronic devices. This is equally true for metal–organic and hetero–organic contacts as they occur, for example, in donor–acceptor systems. Here, we report on the structure formation and interaction across such a heteromolecular interface. It is formed by monolayers of F16CuPc and CuPc stacked on a Ag(111) surface. We investigated the lateral and vertical structure using spot-profile analysis low energy electron diffraction and normal incidence X-ray standing waves, and performed pair potential calculations to understand the driving forces for the structure formation. Most surprisingly, for one phase we found a commensurate registry between the two organic layers, usually a sign for a strong (chemisorptive) interaction often involving metallic states of the surface. However, because the organic bilayer is not commensurate with the underlying Ag substrate in our case, the dominating factor must be the intermolecular interaction. Pair potential calculations suggest a site-specific adsorption that leads to a commensurate registry at the heteromolecular interface. The adsorbate system was further characterized by measuring adsorption heights, indicating flat-lying molecules and a CuPc–F16CuPc layer spacing of 3.06 Å.show moreshow less

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christoph Kleimann, Benjamin StadtmüllerGND, Sonja Schröder, Christian Kumpf
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/112939
ISSN:1932-7447OPAC
ISSN:1932-7455OPAC
Parent Title (English):The Journal of Physical Chemistry C
Publisher:American Chemical Society (ACS)
Type:Article
Language:English
Year of first Publication:2014
Release Date:2024/05/14
Volume:118
Issue:3
First Page:1652
Last Page:1660
DOI:https://doi.org/10.1021/jp411289j
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Experimentalphysik II
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik