Unexpected interplay of bonding height and energy level alignment at heteromolecular hybrid interfaces

  • Although geometric and electronic properties of any physical or chemical system are always mutually coupled by the rules of quantum mechanics, counterintuitive coincidences between the two are sometimes observed. The coadsorption of the organic molecules 3,4,9,10-perylene tetracarboxylic dianhydride and copper-II-phthalocyanine on Ag(111) represents such a case, since geometric and electronic structures appear to be decoupled: one molecule moves away from the substrate while its electronic structure indicates a stronger chemical interaction, and vice versa for the other. Our comprehensive experimental and ab-initio theoretical study reveals that, mediated by the metal surface, both species mutually amplify their charge-donating and -accepting characters, respectively. This resolves the apparent paradox, and demonstrates with exceptional clarity how geometric and electronic bonding parameters are intertwined at metal–organic interfaces.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Benjamin StadtmüllerGND, Daniel Lüftner, Martin Willenbockel, Eva M. Reinisch, Tomoki Sueyoshi, Georg Koller, Serguei Soubatch, Michael G. Ramsey, Peter Puschnig, F. Stefan Tautz, Christian Kumpf
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/112940
ISSN:2041-1723OPAC
Parent Title (English):Nature Communications
Publisher:Springer Science and Business Media LLC
Type:Article
Language:English
Year of first Publication:2014
Release Date:2024/05/14
Volume:5
Issue:1
First Page:3685
DOI:https://doi.org/10.1038/ncomms4685
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Experimentalphysik II
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik