- The magnetic response of a ferromagnet after an ultrafast optical excitation can be connected to the underlying electronic dynamics either via primary excitation processes during the laser pulse or via secondary collision processes. In the latter case, the information on the details of the excitation is lost and, therefore, the electron dynamics can be described using quasi-equilibrium concepts. In this work, we study the effect of the pump photon energy on the ultrafast demagnetization dynamics in ferromagnetic nickel. We find that the magnetization dynamics for similar absorbed energies for a range of pump photon energies are almost identical and depend only on the absorbed energy. This is in stark contrast to characteristic differences in the optically excited electronic distributions, as calculated from the band structure. In addition, the measured fluence-dependent dynamics can be reproduced with a model based on local temperatures. These findings indicate that it is mainlyThe magnetic response of a ferromagnet after an ultrafast optical excitation can be connected to the underlying electronic dynamics either via primary excitation processes during the laser pulse or via secondary collision processes. In the latter case, the information on the details of the excitation is lost and, therefore, the electron dynamics can be described using quasi-equilibrium concepts. In this work, we study the effect of the pump photon energy on the ultrafast demagnetization dynamics in ferromagnetic nickel. We find that the magnetization dynamics for similar absorbed energies for a range of pump photon energies are almost identical and depend only on the absorbed energy. This is in stark contrast to characteristic differences in the optically excited electronic distributions, as calculated from the band structure. In addition, the measured fluence-dependent dynamics can be reproduced with a model based on local temperatures. These findings indicate that it is mainly secondary processes that are responsible for the observed demagnetization dynamics.…