J. Lloyd-Hughes, P. M. Oppeneer, T. Pereira dos Santos, A. Schleife, S. Meng, M. A. Sentef, M. Ruggenthaler, A. Rubio, I. Radu, M. Murnane, X. Shi, H. Kapteyn, Benjamin Stadtmüller, K. M. Dani, F. H. da Jornada, E. Prinz, M. Aeschlimann, R. L. Milot, M. Burdanova, J. Boland, T. Cocker, F. Hegmann
- In the 60 years since the invention of the laser, the scientific community has developed numerous fields of research based on these bright, coherent light sources, including the areas of imaging, spectroscopy, materials processing and communications. Ultrafast spectroscopy and imaging techniques are at the forefront of research into the light–matter interaction at the shortest times accessible to experiments, ranging from a few attoseconds to nanoseconds. Light pulses provide a crucial probe of the dynamical motion of charges, spins, and atoms on picosecond, femtosecond, and down to attosecond timescales, none of which are accessible even with the fastest electronic devices. Furthermore, strong light pulses can drive materials into unusual phases, with exotic properties. In this roadmap we describe the current state-of-the-art in experimental and theoretical studies of condensed matter using ultrafast probes. In each contribution, the authors also use their extensive knowledge toIn the 60 years since the invention of the laser, the scientific community has developed numerous fields of research based on these bright, coherent light sources, including the areas of imaging, spectroscopy, materials processing and communications. Ultrafast spectroscopy and imaging techniques are at the forefront of research into the light–matter interaction at the shortest times accessible to experiments, ranging from a few attoseconds to nanoseconds. Light pulses provide a crucial probe of the dynamical motion of charges, spins, and atoms on picosecond, femtosecond, and down to attosecond timescales, none of which are accessible even with the fastest electronic devices. Furthermore, strong light pulses can drive materials into unusual phases, with exotic properties. In this roadmap we describe the current state-of-the-art in experimental and theoretical studies of condensed matter using ultrafast probes. In each contribution, the authors also use their extensive knowledge to highlight challenges and predict future trends.…
MetadatenAuthor: | J. Lloyd-Hughes, P. M. Oppeneer, T. Pereira dos Santos, A. Schleife, S. Meng, M. A. Sentef, M. Ruggenthaler, A. Rubio, I. Radu, M. Murnane, X. Shi, H. Kapteyn, Benjamin StadtmüllerGND, K. M. Dani, F. H. da Jornada, E. Prinz, M. Aeschlimann, R. L. Milot, M. Burdanova, J. Boland, T. Cocker, F. Hegmann |
---|
URN: | urn:nbn:de:bvb:384-opus4-1129949 |
---|
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/112994 |
---|
ISSN: | 0953-8984OPAC |
---|
ISSN: | 1361-648XOPAC |
---|
Parent Title (English): | Journal of Physics: Condensed Matter |
---|
Publisher: | IOP Publishing |
---|
Type: | Article |
---|
Language: | English |
---|
Year of first Publication: | 2021 |
---|
Publishing Institution: | Universität Augsburg |
---|
Release Date: | 2024/05/14 |
---|
Volume: | 33 |
---|
Issue: | 35 |
---|
First Page: | 353001 |
---|
Note: | By Benjamin Stadtmüller: Chapter 8: Ultrafast Momentum Microscopy – A new approach for ultrafast band structure imaging |
---|
DOI: | https://doi.org/10.1088/1361-648x/abfe21 |
---|
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
---|
| Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik |
---|
| Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Experimentalphysik II |
---|
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik |
---|
Licence (German): | CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand) |
---|