Frustration-induced quantum criticality in Ni-doped CePdAl as revealed by the μSR technique

  • In CePdAl, the 4⁢f moments of cerium arrange to form a geometrically frustrated kagome lattice. Due to frustration, in addition to Kondo and Ruderman-Kittel-Kasuya-Yosida interactions, this metallic system shows a long-range magnetic order (LRO) with a TN of only 2.7 K. Upon Ni doping at the Pd sites, TN is further suppressed, to reach zero at a critical concentration xc≈0.15. Here, by using muon-spin relaxation and rotation (µ⁢SR), we investigate CePd1−xNix⁢Al at a local level for five different Ni concentrations, both above and below xc. Like the parent CePdAl compound, for x=0.05, we observe an incommensurate LRO, which turns into a quasistatic magnetic order for x=0.1 and 0.14. More interestingly, away from xc, for x=0.16 and 0.18, we still observe a non-Fermi-liquid (NFL) regime, evidenced by a power-law divergence of the longitudinal relaxation at low temperatures. In this case, longitudinal field measurements exhibit a time-field scaling, indicative of cooperative spin dynamicsIn CePdAl, the 4⁢f moments of cerium arrange to form a geometrically frustrated kagome lattice. Due to frustration, in addition to Kondo and Ruderman-Kittel-Kasuya-Yosida interactions, this metallic system shows a long-range magnetic order (LRO) with a TN of only 2.7 K. Upon Ni doping at the Pd sites, TN is further suppressed, to reach zero at a critical concentration xc≈0.15. Here, by using muon-spin relaxation and rotation (µ⁢SR), we investigate CePd1−xNix⁢Al at a local level for five different Ni concentrations, both above and below xc. Like the parent CePdAl compound, for x=0.05, we observe an incommensurate LRO, which turns into a quasistatic magnetic order for x=0.1 and 0.14. More interestingly, away from xc, for x=0.16 and 0.18, we still observe a non-Fermi-liquid (NFL) regime, evidenced by a power-law divergence of the longitudinal relaxation at low temperatures. In this case, longitudinal field measurements exhibit a time-field scaling, indicative of cooperative spin dynamics that persists for x>xc. Furthermore, like the externally applied pressure, the chemical pressure induced by Ni doping suppresses the region below T*, characterized by a spin-liquid-like dynamical behavior. Our results suggest that the magnetic properties of CePdAl are similarly affected by the hydrostatic and the chemical pressure. We also confirm that the unusual NFL regime (compared with conventional quantum critical systems) is due to the presence of frustration that persists up to the highest Ni concentrations.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:I. Ishant, T. Shiroka, O. Stockert, Veronika FritschORCiDGND, M. Majumder
URN:urn:nbn:de:bvb:384-opus4-1132133
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/113213
ISSN:2643-1564OPAC
Parent Title (English):Physical Review Research
Publisher:American Physical Society (APS)
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2024/06/03
Volume:6
Issue:2
First Page:023112
DOI:https://doi.org/10.1103/physrevresearch.6.023112
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Experimentalphysik VI
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)