Adaptive numerical simulations with Trixi.jl: a case study of Julia for scientific computing
- We present Trixi.jl, a Julia package for adaptive high-order numerical simulations of hyperbolic partial differential equations. Utilizing Julia's strengths, Trixi.jl is extensible, easy to use, and fast. We describe the main design choices that enable these features and compare Trixi.jl with a mature open source Fortran code that uses the same numerical methods. We conclude with an assessment of Julia for simulation-focused scientific computing, an area that is still dominated by traditional high-performance computing languages such as C, C++, and Fortran.
Author: | Hendrik Ranocha, Michael Schlottke-LakemperORCiDGND, Andrew R. Winters, Erik Faulhaber, Jessie Chan, Gregor J. Gassner |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1137096 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/113709 |
ISSN: | 2642-4029OPAC |
Parent Title (English): | JuliaCon Proceedings |
Publisher: | The Open Journal |
Type: | Article |
Language: | English |
Year of first Publication: | 2022 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2024/07/01 |
Volume: | 1 |
Issue: | 1 |
First Page: | 77 |
DOI: | https://doi.org/10.21105/jcon.00077 |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für High-Performance Scientific Computing | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Licence (German): | CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand) |