Adaptive numerical simulations with Trixi.jl: a case study of Julia for scientific computing

  • We present Trixi.jl, a Julia package for adaptive high-order numerical simulations of hyperbolic partial differential equations. Utilizing Julia's strengths, Trixi.jl is extensible, easy to use, and fast. We describe the main design choices that enable these features and compare Trixi.jl with a mature open source Fortran code that uses the same numerical methods. We conclude with an assessment of Julia for simulation-focused scientific computing, an area that is still dominated by traditional high-performance computing languages such as C, C++, and Fortran.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Hendrik Ranocha, Michael Schlottke-LakemperORCiDGND, Andrew R. Winters, Erik Faulhaber, Jessie Chan, Gregor J. Gassner
URN:urn:nbn:de:bvb:384-opus4-1137096
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/113709
ISSN:2642-4029OPAC
Parent Title (English):JuliaCon Proceedings
Publisher:The Open Journal
Type:Article
Language:English
Year of first Publication:2022
Publishing Institution:Universität Augsburg
Release Date:2024/07/01
Volume:1
Issue:1
First Page:77
DOI:https://doi.org/10.21105/jcon.00077
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für High-Performance Scientific Computing
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)