2024 roadmap on magnetic microscopy techniques and their applications in materials science

  • Considering the growing interest in magnetic materials for unconventional computing, data storage, and sensor applications, there is active research not only on material synthesis but also characterisation of their properties. In addition to structural and integral magnetic characterisations, imaging of magnetisation patterns, current distributions and magnetic fields at nano- and microscale is of major importance to understand the material responses and qualify them for specific applications. In this roadmap, we aim to cover a broad portfolio of techniques to perform nano- and microscale magnetic imaging using superconducting quantum interference devices, spin centre and Hall effect magnetometries, scanning probe microscopies, x-ray- and electron-based methods as well as magnetooptics and nanoscale magnetic resonance imaging. The roadmap is aimed as a single access point of information for experts in the field as well as the young generation of students outlining prospects of theConsidering the growing interest in magnetic materials for unconventional computing, data storage, and sensor applications, there is active research not only on material synthesis but also characterisation of their properties. In addition to structural and integral magnetic characterisations, imaging of magnetisation patterns, current distributions and magnetic fields at nano- and microscale is of major importance to understand the material responses and qualify them for specific applications. In this roadmap, we aim to cover a broad portfolio of techniques to perform nano- and microscale magnetic imaging using superconducting quantum interference devices, spin centre and Hall effect magnetometries, scanning probe microscopies, x-ray- and electron-based methods as well as magnetooptics and nanoscale magnetic resonance imaging. The roadmap is aimed as a single access point of information for experts in the field as well as the young generation of students outlining prospects of the development of magnetic imaging technologies for the upcoming decade with a focus on physics, materials science, and chemistry of planar, three-dimensional and geometrically curved objects of different material classes including two-dimensional materials, complex oxides, semi-metals, multiferroics, skyrmions, antiferromagnets, frustrated magnets, magnetic molecules/nanoparticles, ionic conductors, superconductors, spintronic and spinorbitronic materials.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:D. V. Christensen, U. Staub, T. R. Devidas, B. Kalisky, K. C. Nowack, J. L. Webb, U. L. Andersen, A. Huck, D. A. Broadway, K. Wagner, P. Maletinsky, T. van der Sar, C. R. Du, A. Yacoby, D. Collomb, S. Bending, A. Oral, H. J. Hug, A.-O. Mandru, V. Neu, H. W. Schumacher, S. Sievers, H. Saito, A. A. Khajetoorians, N. Hauptmann, S. Baumann, A. Eichler, C. L. Degen, J. McCord, M. Vogel, M. Fiebig, P. Fischer, A. Hierro-Rodriguez, S. Finizio, S. S. Dhesi, C. Donnelly, Felix BüttnerORCiDGND, O. Kfir, W. Hu, S. Zayko, S. Eisebitt, B. Pfau, R. Frömter, M. Kläui, F. S. Yasin, B. J. McMorran, S. Seki, X. Yu, A. Lubk, D. Wolf, N. Pryds, D. Makarov, M. Poggio
URN:urn:nbn:de:bvb:384-opus4-1137675
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/113767
ISSN:2515-7639OPAC
Parent Title (English):Journal of Physics: Materials
Publisher:IOP Publishing
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2024/07/01
Volume:7
Issue:3
First Page:032501
DOI:https://doi.org/10.1088/2515-7639/ad31b5
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Experimentalphysik V
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)