Cooperative dynamics of DNA-grafted magnetic nanoparticles optimize magnetic biosensing and coupling to DNA origami

  • Magnetic nanoparticles (MNPs) provide new opportunities for enzyme-free biosensing of nucleic acid biomarkers and magnetic actuation by patterning on DNA origami, yet how the DNA grafting density affects their dynamics and accessibility remains poorly understood. Here, we performed surface functionalization of MNPs with single-stranded DNA (ssDNA) via click chemistry with a tunable grafting density, which enables the encapsulation of single MNPs inside a functional polymeric layer. We used several complementary methods to show that particle translational and rotational dynamics exhibit a sigmoidal dependence on the ssDNA grafting density. At low densities, ssDNA strands adopt a coiled conformation that results in minor alterations to particle dynamics, while at high densities, they organize into polymer brushes that collectively influence particle dynamics. Intermediate ssDNA densities, where the dynamics are most sensitive to changes, show the highest magnetic biosensing sensitivityMagnetic nanoparticles (MNPs) provide new opportunities for enzyme-free biosensing of nucleic acid biomarkers and magnetic actuation by patterning on DNA origami, yet how the DNA grafting density affects their dynamics and accessibility remains poorly understood. Here, we performed surface functionalization of MNPs with single-stranded DNA (ssDNA) via click chemistry with a tunable grafting density, which enables the encapsulation of single MNPs inside a functional polymeric layer. We used several complementary methods to show that particle translational and rotational dynamics exhibit a sigmoidal dependence on the ssDNA grafting density. At low densities, ssDNA strands adopt a coiled conformation that results in minor alterations to particle dynamics, while at high densities, they organize into polymer brushes that collectively influence particle dynamics. Intermediate ssDNA densities, where the dynamics are most sensitive to changes, show the highest magnetic biosensing sensitivity for the detection of target nucleic acids. Finally, we demonstrate that MNPs with high ssDNA grafting densities are required to efficiently couple to DNA origami. Our results establish ssDNA grafting density as a critical parameter for the functionalization of MNPs for magnetic biosensing and functionalization of DNA nanostructures.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Aidin Lak, Yihao Wang, Pauline J. Kolbeck, Christoph Pauer, Mohammad Suman Chowdhury, Marco Cassani, Frank Ludwig, Thilo Viereck, Florian Selbach, Philip Tinnefeld, Meinhard Schilling, Tim Liedl, Joe Tavacoli, Jan LipfertORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1142119
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/114211
ISSN:2040-3364OPAC
ISSN:2040-3372OPAC
Parent Title (English):Nanoscale
Publisher:Royal Society of Chemistry (RSC)
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2024/07/22
Volume:16
Issue:15
First Page:7678
Last Page:7689
DOI:https://doi.org/10.1039/d3nr06253h
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Experimentalphysik I
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoCC-BY 3.0: Creative Commons - Namensnennung (mit Print on Demand)