A physically-informed machine learning model for freeform bending

  • This work aims at a fast computational process model of the free-form bending process. It proposes a novel physically-informed machine learning model, which is trained with experimental data of bending constant radii and utilizes additional physical bending knowledge by integrating Timoshenko’s beam theory. The model is able to predict the resulting plastic deformation of the tube after exiting the die by computing an elastic representation of the tube’s deformation with beam theory at each time step. This elastic representation serves as input for a regression model similar to a partially connected neural network. This physically-informed machine learning model generalizes the constant training radii to complex bend geometries consisting of transitional sections and true spline geometries. It is compared to a benchmark finite element simulation and has an improved prediction quality for complex kinematics while reducing the computation time by four orders of magnitude.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Philipp LechnerORCiDGND, Lorenzo Scandola, Daniel Maier, Christoph Hartmann, Yevgen Rizaiev, Mona Lieb
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/114543
ISSN:0956-5515OPAC
ISSN:1572-8145OPAC
Parent Title (English):Journal of Intelligent Manufacturing
Publisher:Springer Science and Business Media LLC
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2024/07/31
DOI:https://doi.org/10.1007/s10845-024-02452-w
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Materials Resource Management
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Materials Resource Management / Juniorprofessur für Data-driven Materials Processing
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
Latest Publications (not yet published in print):Aktuelle Publikationen (noch nicht gedruckt erschienen)
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)