A hybrid neuro-fuzzy model to forecast inflation

  • One of the key issues in constructing monetary policy is accurate prediction of the inflation level. The complex behavior and non-linear nature of the financial markets makes it hard to forecast the inflation rate precisely. This paper introduces a hybrid model that attempts to forecast the inflation rate with a combination of a subtractive clustering technique and a fuzzy inference neural network to overcome the shortcomings of the individual methodologies. Selected macroeconomic factors were used to predict the historical CPI data from the US Markets. The results of the proposed hybrid model are measured in RMSE.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:David Enke, Nijat Mehdiyev
URN:urn:nbn:de:bvb:384-opus4-1150746
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/115074
ISSN:1877-0509OPAC
Parent Title (English):Procedia Computer Science
Publisher:Elsevier BV
Place of publication:Amsterdam
Type:Article
Language:English
Year of first Publication:2014
Publishing Institution:Universität Augsburg
Release Date:2024/09/02
Volume:36
First Page:254
Last Page:260
DOI:https://doi.org/10.1016/j.procs.2014.09.088
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Menschzentrierte Künstliche Intelligenz
Nachhaltigkeitsziele
Nachhaltigkeitsziele / Ziel 17 - Partnerschaften zur Erreichung der Ziele
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY-NC-ND 3.0: Creative Commons - Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)