Fair tree connection games with topology-dependent edge cost

  • How do rational agents self-organize when trying to connect to a common target? We study this question with a simple tree formation game which is related to the well-known fair single-source connection game by Anshelevich et al. (FOCS'04) and selfish spanning tree games by Gourvès and Monnot (WINE'08). In our game agents correspond to nodes in a network that activate a single outgoing edge to connect to the common target node (possibly via other nodes). Agents pay for their path to the common target, and edge costs are shared fairly among all agents using an edge. The main novelty of our model is dynamic edge costs that depend on the in-degree of the respective endpoint. This reflects that connecting to popular nodes that have increased internal coordination costs is more expensive since they can charge higher prices for their routing service. In contrast to related models, we show that equilibria are not guaranteed to exist, but we prove the existence for infinitely many numbers ofHow do rational agents self-organize when trying to connect to a common target? We study this question with a simple tree formation game which is related to the well-known fair single-source connection game by Anshelevich et al. (FOCS'04) and selfish spanning tree games by Gourvès and Monnot (WINE'08). In our game agents correspond to nodes in a network that activate a single outgoing edge to connect to the common target node (possibly via other nodes). Agents pay for their path to the common target, and edge costs are shared fairly among all agents using an edge. The main novelty of our model is dynamic edge costs that depend on the in-degree of the respective endpoint. This reflects that connecting to popular nodes that have increased internal coordination costs is more expensive since they can charge higher prices for their routing service. In contrast to related models, we show that equilibria are not guaranteed to exist, but we prove the existence for infinitely many numbers of agents. Moreover, we analyze the structure of equilibrium trees and employ these insights to prove a constant upper bound on the Price of Anarchy as well as non-trivial lower bounds on both the Price of Anarchy and the Price of Stability. We also show that in comparison with the social optimum tree the overall cost of an equilibrium tree is more fairly shared among the agents. Thus, we prove that self-organization of rational agents yields on average only slightly higher cost per agent compared to the centralized optimum, and at the same time, it induces a more fair cost distribution. Moreover, equilibrium trees achieve a beneficial trade-off between a low height and low maximum degree, and hence these trees might be of independent interest from a combinatorics point-of-view. We conclude with a discussion of promising extensions of our model.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Davide Bilò, Tobias Friedrich, Pascal LenznerORCiDGND, Anna Melnichenko, Louise Molitor
URN:urn:nbn:de:bvb:384-opus4-1152410
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/115241
ISBN:978-3-95977-174-0OPAC
Parent Title (English):40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020), December 14–18, 2020, virtual conference
Publisher:Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Place of publication:Dagstuhl
Editor:Nitin Saxena, Sunil Simon
Type:Conference Proceeding
Language:English
Year of first Publication:2020
Publishing Institution:Universität Augsburg
Release Date:2024/09/06
First Page:15:1
Last Page:15:15
Series:Leibniz International Proceedings in Informatics (LIPIcs) ; 182
DOI:https://doi.org/10.4230/LIPIcs.FSTTCS.2020.15
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Theoretische Informatik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY 3.0: Creative Commons - Namensnennung (mit Print on Demand)