Reducing entanglement with physically inspired fermion-to-qubit mappings

  • In ab initio electronic structure simulations, fermion-to-qubit mappings represent the initial encoding step from the problem of fermions into a problem of qubits. This work introduces a physically inspired method for constructing mappings that significantly simplify entanglement requirements when one is simulating states of interest. The presence of electronic excitations drives the construction of our mappings, reducing correlations for target states in the qubit space. To benchmark our method, we simulate ground-states of small molecules and observe an enhanced performance when compared with classical and quantum variational approaches from prior research using conventional mappings. In particular, on the quantum side, our mappings require a reduced number of entangling layers to achieve accuracy for LiH, H2, (H2)2, H≠4 stretching, and benzene’s π system using the RY hardware-efficient ansatz. In addition, our mappings also provide an enhanced ground-state simulation performance inIn ab initio electronic structure simulations, fermion-to-qubit mappings represent the initial encoding step from the problem of fermions into a problem of qubits. This work introduces a physically inspired method for constructing mappings that significantly simplify entanglement requirements when one is simulating states of interest. The presence of electronic excitations drives the construction of our mappings, reducing correlations for target states in the qubit space. To benchmark our method, we simulate ground-states of small molecules and observe an enhanced performance when compared with classical and quantum variational approaches from prior research using conventional mappings. In particular, on the quantum side, our mappings require a reduced number of entangling layers to achieve accuracy for LiH, H2, (H2)2, H≠4 stretching, and benzene’s π system using the RY hardware-efficient ansatz. In addition, our mappings also provide an enhanced ground-state simulation performance in the density matrix renormalization group algorithm for the N2 molecule.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Teodor Parella-Dilmé, Korbinian Kottmann, Leonardo Zambrano, Luke Mortimer, Jakob S. KottmannORCiDGND, Antonio Acín
URN:urn:nbn:de:bvb:384-opus4-1152625
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/115262
ISSN:2691-3399OPAC
Parent Title (English):PRX Quantum
Publisher:American Physical Society (APS)
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2024/09/10
Volume:5
Issue:3
First Page:030333
DOI:https://doi.org/10.1103/prxquantum.5.030333
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Quantenalgorithmik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)