Efficient global multi parameter calibration for complex system models using machine-learning surrogates
- In this work, we adress challenges associated with multi parameter calibration of complex system models of high computational expense. We propose to replace the Modelica Model for screening of parameter space by a computational effective Machine-Learning Surrogate, followed by a polishing with a gradient-based optimizer coupled to the Modelica Model. Our results show the superiority of this approach compared to common-used optimization strategies. We can resign on determining initial optimization values while using a small number of Modelica model calls, paving the path towards efficient global optimization. The Machine Learning Surrogate, namely a Physics Enhanced Latent Space Variational Autoencoder (PELS-VAE), is able to capture the impact of most influential parameters on small training sets and delivers sufficiently good starting values to the gradient-based optimizer. In order to make this paper self-contained, we give a sound overview to the necessary theory, namely GlobalIn this work, we adress challenges associated with multi parameter calibration of complex system models of high computational expense. We propose to replace the Modelica Model for screening of parameter space by a computational effective Machine-Learning Surrogate, followed by a polishing with a gradient-based optimizer coupled to the Modelica Model. Our results show the superiority of this approach compared to common-used optimization strategies. We can resign on determining initial optimization values while using a small number of Modelica model calls, paving the path towards efficient global optimization. The Machine Learning Surrogate, namely a Physics Enhanced Latent Space Variational Autoencoder (PELS-VAE), is able to capture the impact of most influential parameters on small training sets and delivers sufficiently good starting values to the gradient-based optimizer. In order to make this paper self-contained, we give a sound overview to the necessary theory, namely Global Sensitivity Analysis with Sobol Indices and Variational Autoencoders.…
Author: | Julius Aka, Johannes Brunnemann, Svenne Freund, Arne Speerforck |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1159178 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/115917 |
ISBN: | 978-91-8075-505-4OPAC |
ISSN: | 1650-3686OPAC |
Parent Title (English): | Proceedings of the 15th International Modelica Conference 2023, October 9-11, Aachen, Germany |
Publisher: | Linköping University Electronic Press |
Place of publication: | Linköping |
Editor: | Dirk Müller, Antonello Monti, Andrea Benigni |
Type: | Conference Proceeding |
Language: | English |
Year of first Publication: | 2023 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2024/10/18 |
First Page: | 107 |
Last Page: | 120 |
Series: | Linköping Electronic Conference Proceedings ; 204 |
DOI: | https://doi.org/10.3384/ecp204107 |
Institutes: | Fakultät für Angewandte Informatik |
Fakultät für Angewandte Informatik / Institut für Informatik | |
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Ingenieurinformatik mit Schwerpunkt Mechatronik | |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |
Licence (German): | CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand) |