Efficient global multi parameter calibration for complex system models using machine-learning surrogates

  • In this work, we adress challenges associated with multi parameter calibration of complex system models of high computational expense. We propose to replace the Modelica Model for screening of parameter space by a computational effective Machine-Learning Surrogate, followed by a polishing with a gradient-based optimizer coupled to the Modelica Model. Our results show the superiority of this approach compared to common-used optimization strategies. We can resign on determining initial optimization values while using a small number of Modelica model calls, paving the path towards efficient global optimization. The Machine Learning Surrogate, namely a Physics Enhanced Latent Space Variational Autoencoder (PELS-VAE), is able to capture the impact of most influential parameters on small training sets and delivers sufficiently good starting values to the gradient-based optimizer. In order to make this paper self-contained, we give a sound overview to the necessary theory, namely GlobalIn this work, we adress challenges associated with multi parameter calibration of complex system models of high computational expense. We propose to replace the Modelica Model for screening of parameter space by a computational effective Machine-Learning Surrogate, followed by a polishing with a gradient-based optimizer coupled to the Modelica Model. Our results show the superiority of this approach compared to common-used optimization strategies. We can resign on determining initial optimization values while using a small number of Modelica model calls, paving the path towards efficient global optimization. The Machine Learning Surrogate, namely a Physics Enhanced Latent Space Variational Autoencoder (PELS-VAE), is able to capture the impact of most influential parameters on small training sets and delivers sufficiently good starting values to the gradient-based optimizer. In order to make this paper self-contained, we give a sound overview to the necessary theory, namely Global Sensitivity Analysis with Sobol Indices and Variational Autoencoders.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Julius Aka, Johannes Brunnemann, Svenne Freund, Arne Speerforck
URN:urn:nbn:de:bvb:384-opus4-1159178
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/115917
ISBN:978-91-8075-505-4OPAC
ISSN:1650-3686OPAC
Parent Title (English):Proceedings of the 15th International Modelica Conference 2023, October 9-11, Aachen, Germany
Publisher:Linköping University Electronic Press
Place of publication:Linköping
Editor:Dirk Müller, Antonello Monti, Andrea Benigni
Type:Conference Proceeding
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2024/10/18
First Page:107
Last Page:120
Series:Linköping Electronic Conference Proceedings ; 204
DOI:https://doi.org/10.3384/ecp204107
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Ingenieurinformatik mit Schwerpunkt Mechatronik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)