Steady state advanced scenarios at ASDEX Upgrade

A. C. C. Sips, R. Arslanbekov, C. Atanasiu, W. Becker, G. Becker, K. Behler, K. Behringer, A. Bergmann, R. Bilato, D. Bolshukhin, K. Borrass, B. Braams, M. Brambilla, F. Braun, A. Buhler, G. Conway, D. Coster, R. Drube, R. Dux, S. Egorov, T. Eich, K. Engelhardt, H.-U. Fahrbach, Ursel Fantz, H. Faugel, M. Foley, K. B. Fournier, P. Franzen, J. C. Fuchs, J. Gafert, G. Gantenbein, O. Gehre, A. Geier, J. Gernhardt, O. Gruber, A. Gude, S. Gunter, G. Haas, D. Hartmann, B. Heger, B. Heinemann, A. Herrmann, J. Hobirk, F. Hofmeister, H. Hohenöcker, L. Horton, V. Igochine, D. Jacobi, M. Jakobi, F. Jenko, A. Kallenbach, O. Kardaun, M. Kaufmann, A. Keller, A. Kendl, J.-W. Kim, K. Kirov, R. Kochergov, H. Kollotzek, W. Kraus, K. Krieger, B. Kurzan, P. T. Lang, P. Lauber, M. Laux, F. Leuterer, A. Lohs, A. Lorenz, C. Maggi, H. Maier, K. Mank, M.-E. Manso, M. Maraschek, K. F. Mast, P. McCarthy, D. Meisel, H. Meister, F. Meo, R. Merkel, D. Merkl, V. Mertens, F. Monaco, H. W. Mück, M. Müller, M. Münich, H. Murmann, Y.-S. Na, G. Neu, R. Neu, J. Neuhauser, J.-M. Noterdaeme, I. Nunes, G. Pautasso, A. G. Peeters, G. Pereverzev, S. Pinches, E. Poli, M. Proschek, R. Pugno, E. Quigley, G. Raupp, T. Ribeiro, R. Riedl, S. Riondato, V. Rohde, J. Roth, F. Ryter, S. Saarelma, W. Sandmann, S. Schade, H.-B. Schilling, W. Schneider, G. Schramm, S. Schweizer, B. Scott, U. Seidel, F. Serra, S. Sesnic, C. Sihler, A. Silva, E. Speth, A. Stäbler, K.-H. Steuer, J. Stober, B. Streibl, E. Strumberger, W. Suttrop, A. Tabasso, A. Tanga, G. Tardini, C. Tichmann, W. Treutterer, M. Troppmann, P. Varela, O. Vollmer, D. Wagner, U. Wenzel, F. Wesner, R. Wolf, E. Wolfrum, E. Würsching, Q. Yu, D. Zasche, T. Zehetbauer, H.-P. Zehrfeld, H. Zohm

  • Recent experiments at ASDEX Upgrade have achieved advanced scenarios with high βN (>3) and confinement enhancement over ITER98(y, 2) scaling, HH98y2 = 1.1–1.5, in steady state. These discharges have been obtained in a modified divertor configuration for ASDEX Upgrade, allowing operation at higher triangularity, and with a changed neutral beam injection (NBI) system, for a more tangential, off-axis beam deposition. The figure of merit, βNHITER89-P, reaches up to 7.5 for several seconds in plasmas approaching stationary conditions. These advanced tokamak discharges have low magnetic shear in the centre, with q on-axis near 1, and edge safety factor, q95 in the range 3.3–4.5. This q-profile is sustained by the bootstrap current, NBI-driven current and fishbone activity in the core. The off-axis heating leads to a strong peaking of the density profile and impurity accumulation in the core. This can be avoided by adding some central heating from ion cyclotron resonance heating or electronRecent experiments at ASDEX Upgrade have achieved advanced scenarios with high βN (>3) and confinement enhancement over ITER98(y, 2) scaling, HH98y2 = 1.1–1.5, in steady state. These discharges have been obtained in a modified divertor configuration for ASDEX Upgrade, allowing operation at higher triangularity, and with a changed neutral beam injection (NBI) system, for a more tangential, off-axis beam deposition. The figure of merit, βNHITER89-P, reaches up to 7.5 for several seconds in plasmas approaching stationary conditions. These advanced tokamak discharges have low magnetic shear in the centre, with q on-axis near 1, and edge safety factor, q95 in the range 3.3–4.5. This q-profile is sustained by the bootstrap current, NBI-driven current and fishbone activity in the core. The off-axis heating leads to a strong peaking of the density profile and impurity accumulation in the core. This can be avoided by adding some central heating from ion cyclotron resonance heating or electron cyclotron resonance heating, since the temperature profiles are stiff in this advanced scenario (no internal transport barrier). Using a combination of NBI and gas fuelling line, average densities up to 80–90% of the Greenwald density are achieved, maintaining good confinement. The best integrated results in terms of confinement, stability and ability to operate at high density are obtained in highly shaped configurations, near double null, with δ = 0.43. At the highest densities, a strong reduction of the edge localized mode activity similar to type II activity is observed, providing a steady power load on the divertor, in the range of 6 MW m−2, despite the high input power used (>10 MW).show moreshow less

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:A. C. C. Sips, R. Arslanbekov, C. Atanasiu, W. Becker, G. Becker, K. Behler, K. Behringer, A. Bergmann, R. Bilato, D. Bolshukhin, K. Borrass, B. Braams, M. Brambilla, F. Braun, A. Buhler, G. Conway, D. Coster, R. Drube, R. Dux, S. Egorov, T. Eich, K. Engelhardt, H.-U. Fahrbach, Ursel FantzORCiDGND, H. Faugel, M. Foley, K. B. Fournier, P. Franzen, J. C. Fuchs, J. Gafert, G. Gantenbein, O. Gehre, A. Geier, J. Gernhardt, O. Gruber, A. Gude, S. Gunter, G. Haas, D. Hartmann, B. Heger, B. Heinemann, A. Herrmann, J. Hobirk, F. Hofmeister, H. Hohenöcker, L. Horton, V. Igochine, D. Jacobi, M. Jakobi, F. Jenko, A. Kallenbach, O. Kardaun, M. Kaufmann, A. Keller, A. Kendl, J.-W. Kim, K. Kirov, R. Kochergov, H. Kollotzek, W. Kraus, K. Krieger, B. Kurzan, P. T. Lang, P. Lauber, M. Laux, F. Leuterer, A. Lohs, A. Lorenz, C. Maggi, H. Maier, K. Mank, M.-E. Manso, M. Maraschek, K. F. Mast, P. McCarthy, D. Meisel, H. Meister, F. Meo, R. Merkel, D. Merkl, V. Mertens, F. Monaco, H. W. Mück, M. Müller, M. Münich, H. Murmann, Y.-S. Na, G. Neu, R. Neu, J. Neuhauser, J.-M. Noterdaeme, I. Nunes, G. Pautasso, A. G. Peeters, G. Pereverzev, S. Pinches, E. Poli, M. Proschek, R. Pugno, E. Quigley, G. Raupp, T. Ribeiro, R. Riedl, S. Riondato, V. Rohde, J. Roth, F. Ryter, S. Saarelma, W. Sandmann, S. Schade, H.-B. Schilling, W. Schneider, G. Schramm, S. Schweizer, B. Scott, U. Seidel, F. Serra, S. Sesnic, C. Sihler, A. Silva, E. Speth, A. Stäbler, K.-H. Steuer, J. Stober, B. Streibl, E. Strumberger, W. Suttrop, A. Tabasso, A. Tanga, G. Tardini, C. Tichmann, W. Treutterer, M. Troppmann, P. Varela, O. Vollmer, D. Wagner, U. Wenzel, F. Wesner, R. Wolf, E. Wolfrum, E. Würsching, Q. Yu, D. Zasche, T. Zehetbauer, H.-P. Zehrfeld, H. Zohm
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/116956
ISSN:0741-3335OPAC
ISSN:1361-6587OPAC
Parent Title (English):Plasma Physics and Controlled Fusion
Publisher:IOP Publishing
Type:Article
Language:English
Year of first Publication:2002
Release Date:2024/11/25
Volume:44
Issue:12B
First Page:B69
Last Page:B83
DOI:https://doi.org/10.1088/0741-3335/44/12b/306
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / AG Experimentelle Plasmaphysik (EPP)
Nachhaltigkeitsziele
Nachhaltigkeitsziele / Ziel 7 - Bezahlbare und saubere Energie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik