Nonlinear quantum computing by amplified encodings

  • This paper presents a novel framework for high-dimensional nonlinear quantum computation that exploits tensor products of amplified vector and matrix encodings to efficiently evaluate multivariate polynomials. The approach enables the solution of nonlinear equations by quantum implementations of the fixed-point iteration and Newton's method, with quantitative runtime bounds derived in terms of the error tolerance. These results show that a quantum advantage, characterized by a logarithmic scaling of complexity with the dimension of the problem, is preserved. While Newton's method achieves near-optimal theoretical complexity, the fixed-point iteration already shows practical feasibility, as demonstrated by numerical experiments solving simple nonlinear problems on existing quantum devices. By bridging theoretical advances with practical implementation, the framework of amplified encodings offers a new path to nonlinear quantum algorithms.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Matthias DeimlORCiDGND, Daniel PeterseimORCiDGND
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/117062
Parent Title (English):arXiv
Publisher:arXiv
Type:Preprint
Language:English
Year of first Publication:2024
Release Date:2024/11/26
First Page:arXiv:2411.16435
DOI:https://doi.org/10.48550/arXiv.2411.16435
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Numerische Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Latest Publications (not yet published in print):Aktuelle Publikationen (noch nicht gedruckt erschienen)