Hierarchical super-localized orthogonal decomposition method

  • We present the construction of a sparse-compressed operator that approximates the solution operator of elliptic PDEs with rough coefficients. To derive the compressed operator, we construct a hierarchical basis of an approximate solution space, with superlocalized basis functions that are quasi-orthogonal across hierarchy levels with respect to the inner product induced by the energy norm. The superlocalization is achieved through a novel variant of the Super-Localized Orthogonal Decomposition method that is built upon corrections of basis functions arising from the Localized Orthogonal Decomposition method. The hierarchical basis not only induces a sparse compression of the solution space but also enables an orthogonal multiresolution decomposition of the approximate solution operator, decoupling scales and solution contributions of each level of the hierarchy. With this decomposition, the solution of the PDE reduces to the solution of a set of independent linear systems per levelWe present the construction of a sparse-compressed operator that approximates the solution operator of elliptic PDEs with rough coefficients. To derive the compressed operator, we construct a hierarchical basis of an approximate solution space, with superlocalized basis functions that are quasi-orthogonal across hierarchy levels with respect to the inner product induced by the energy norm. The superlocalization is achieved through a novel variant of the Super-Localized Orthogonal Decomposition method that is built upon corrections of basis functions arising from the Localized Orthogonal Decomposition method. The hierarchical basis not only induces a sparse compression of the solution space but also enables an orthogonal multiresolution decomposition of the approximate solution operator, decoupling scales and solution contributions of each level of the hierarchy. With this decomposition, the solution of the PDE reduces to the solution of a set of independent linear systems per level with mesh-independent condition numbers that can be computed simultaneously. We present an accuracy study of the compressed solution operator as well as numerical results illustrating our theoretical findings and beyond, revealing that desired optimal error rates with well-behaved superlocalized basis functions can still be attained even in the challenging case of coefficients with high-contrast channels.show moreshow less

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jose C. Garay, Hannah Mohr, Daniel PeterseimORCiDGND, Christoph ZimmerORCiDGND
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/117064
Parent Title (English):arXiv
Type:Preprint
Language:English
Year of first Publication:2024
Release Date:2024/11/26
First Page:arXiv:2407.18671
DOI:https://doi.org/10.48550/arXiv.2407.18671
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Numerische Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Latest Publications (not yet published in print):Aktuelle Publikationen (noch nicht gedruckt erschienen)