Unsupervised anomaly detection in continuous integration pipelines

  • Modern embedded systems comprise more and more software. This yields novel challenges in development and quality assurance. Complex software interactions may lead to serious performance issues that can have a crucial economic impact if they are not resolved during development. Henceforth, we decided to develop and evaluate a machine learning-based approach to identify performance issues. Our experiments using real-world data show the applicability of our methodology and outline the value of an integration into modern software processes such as continuous integration.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Daniel Gerber, Lukas MeitzORCiD, Lukas Rosenbauer, Jörg HähnerORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1171366
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/117136
ISBN:978-989-758-696-5OPAC
ISSN:2184-4895OPAC
Parent Title (English):Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering - ENASE, April 28-29, 2024, in Angers, France
Publisher:SciTePress
Place of publication:Setúbal
Editor:Hermann Kaindl, Mike Mannion, Leszek Maciaszek
Type:Conference Proceeding
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2024/11/28
First Page:336
Last Page:343
DOI:https://doi.org/10.5220/0012618500003687
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Organic Computing
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)