Towards supporting an early diagnosis of multiple sclerosis using vocal features

  • Multiple sclerosis (MS) is a neuroinflammatory disease that affects millions of people worldwide. Since dysarthria is prominent in people with MS (pwMS), this paper aims to identify acoustic features that differ between people with MS and healthy controls (HC). Additionally, we develop automatic classification methods to distinguish between pwMS and HC. In this work, we present a new dataset of a German-speaking cohort which contains 39 patients with low disability of relapsing MS and 16 HC. Findings suggest that certain interpretable speech features could be useful in diagnosing MS, and that machine learning methods could potentially support fast and unobtrusive screening in clinical practice. The study emphasises the importance of analysing free speech compared to read speech.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Monica Gonzalez-Machorro, Pascal Hecker, Uwe D. Reichel, Helly N. Hammer, Robert Hoepner, Lisa Pedrotti, Alisha Zmutt, Hesam Sagha, Johan van Beek, Florian Eyben, Dagmar M. Schuller, Björn W. SchullerORCiDGND, Bert Arnrich
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/117376
ISSN:2958-1796OPAC
Parent Title (English):INTERSPEECH 2023, 20-24 August 2023, Dublin, Ireland
Publisher:ISCA
Place of publication:Baixas
Editor:Naomi Harte, Julie Carson-Berndsen, Gareth Jones
Type:Conference Proceeding
Language:English
Year of first Publication:2023
Release Date:2024/12/09
First Page:1518
Last Page:1522
DOI:https://doi.org/10.21437/interspeech.2023-1759
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing
Nachhaltigkeitsziele
Nachhaltigkeitsziele / Ziel 16 - Frieden, Gerechtigkeit und starke Institutionen
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit