Dominik Müller, Philip Meyer, Lukas Rentschler, Robin Manz, Daniel Hieber, Jonas Bäcker, Samantha Cramer, Christoph Wengenmayr, Bruno Märkl, Ralf Huss, Frank Kramer, Iñaki Soto-Rey, Johannes Raffler
- Prostate cancer is a dominant health concern calling for advanced diagnostic tools. Utilizing digital pathology and artificial intelligence, this study explores the potential of 11 deep neural network architectures for automated Gleason grading in prostate carcinoma focusing on comparing traditional and recent architectures. A standardized image classification pipeline, based on the AUCMEDI framework, facilitated robust evaluation using an in-house dataset consisting of 34,264 annotated tissue tiles. The results indicated varying sensitivity across architectures, with ConvNeXt demonstrating the strongest performance. Notably, newer architectures achieved superior performance, even though with challenges in differentiating closely related Gleason grades. The ConvNeXt model was capable of learning a balance between complexity and generalizability. Overall, this study lays the groundwork for enhanced Gleason grading systems, potentially improving diagnostic efficiency for prostate cancer.Prostate cancer is a dominant health concern calling for advanced diagnostic tools. Utilizing digital pathology and artificial intelligence, this study explores the potential of 11 deep neural network architectures for automated Gleason grading in prostate carcinoma focusing on comparing traditional and recent architectures. A standardized image classification pipeline, based on the AUCMEDI framework, facilitated robust evaluation using an in-house dataset consisting of 34,264 annotated tissue tiles. The results indicated varying sensitivity across architectures, with ConvNeXt demonstrating the strongest performance. Notably, newer architectures achieved superior performance, even though with challenges in differentiating closely related Gleason grades. The ConvNeXt model was capable of learning a balance between complexity and generalizability. Overall, this study lays the groundwork for enhanced Gleason grading systems, potentially improving diagnostic efficiency for prostate cancer.…


MetadatenAuthor: | Dominik MüllerORCiDGND, Philip Meyer, Lukas Rentschler, Robin Manz, Daniel Hieber, Jonas Bäcker, Samantha Cramer, Christoph Wengenmayr, Bruno MärklORCiDGND, Ralf HussORCiD, Frank KramerORCiDGND, Iñaki Soto-ReyORCiD, Johannes Raffler |
---|
URN: | urn:nbn:de:bvb:384-opus4-1189158 |
---|
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/118915 |
---|
ISBN: | 9781643685335OPAC |
---|
ISSN: | 0926-9630OPAC |
---|
ISSN: | 1879-8365OPAC |
---|
Parent Title (English): | Digital health and informatics innovations for sustainable health care systems: proceedings of MIE 2024 |
---|
Publisher: | IOS Press |
---|
Place of publication: | Amsterdam |
---|
Editor: | John Mantas, Arie Hasman, George Demiris, Kaija Saranto, Michael Marschollek, Theodoros N. Arvanitis, Ivana Ognjanović, Arriel Benis, Parisis Gallos, Emmanouil Zoulias, Elisavet Andrikopoulou |
---|
Type: | Conference Proceeding |
---|
Language: | English |
---|
Year of first Publication: | 2024 |
---|
Publishing Institution: | Universität Augsburg |
---|
Release Date: | 2025/02/07 |
---|
First Page: | 1110 |
---|
Last Page: | 1114 |
---|
Series: | Studies in Health Technology and Informatics ; 316 |
---|
DOI: | https://doi.org/10.3233/shti240605 |
---|
Institutes: | Fakultät für Angewandte Informatik |
---|
| Fakultät für Angewandte Informatik / Institut für Informatik |
---|
| Medizinische Fakultät |
---|
| Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für IT-Infrastrukturen für die Translationale Medizinische Forschung |
---|
| Medizinische Fakultät / Universitätsklinikum |
---|
| Medizinische Fakultät / Lehrstuhl für Allgemeine und Spezielle Pathologie |
---|
| Medizinische Fakultät / Lehrstuhl für Datenmanagement und Clinical Decision Support |
---|
| Nachhaltigkeitsziele |
---|
| Nachhaltigkeitsziele / Ziel 3 - Gesundheit und Wohlergehen |
---|
Dewey Decimal Classification: | 6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit |
---|
Licence (German): | CC-BY-NC 4.0: Creative Commons: Namensnennung - Nicht kommerziell (mit Print on Demand) |
---|