Assessing the performance of deep learning for automated Gleason grading in prostate cancer

  • Prostate cancer is a dominant health concern calling for advanced diagnostic tools. Utilizing digital pathology and artificial intelligence, this study explores the potential of 11 deep neural network architectures for automated Gleason grading in prostate carcinoma focusing on comparing traditional and recent architectures. A standardized image classification pipeline, based on the AUCMEDI framework, facilitated robust evaluation using an in-house dataset consisting of 34,264 annotated tissue tiles. The results indicated varying sensitivity across architectures, with ConvNeXt demonstrating the strongest performance. Notably, newer architectures achieved superior performance, even though with challenges in differentiating closely related Gleason grades. The ConvNeXt model was capable of learning a balance between complexity and generalizability. Overall, this study lays the groundwork for enhanced Gleason grading systems, potentially improving diagnostic efficiency for prostate cancer.Prostate cancer is a dominant health concern calling for advanced diagnostic tools. Utilizing digital pathology and artificial intelligence, this study explores the potential of 11 deep neural network architectures for automated Gleason grading in prostate carcinoma focusing on comparing traditional and recent architectures. A standardized image classification pipeline, based on the AUCMEDI framework, facilitated robust evaluation using an in-house dataset consisting of 34,264 annotated tissue tiles. The results indicated varying sensitivity across architectures, with ConvNeXt demonstrating the strongest performance. Notably, newer architectures achieved superior performance, even though with challenges in differentiating closely related Gleason grades. The ConvNeXt model was capable of learning a balance between complexity and generalizability. Overall, this study lays the groundwork for enhanced Gleason grading systems, potentially improving diagnostic efficiency for prostate cancer.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dominik MüllerORCiDGND, Philip Meyer, Lukas Rentschler, Robin Manz, Daniel Hieber, Jonas Bäcker, Samantha Cramer, Christoph Wengenmayr, Bruno MärklORCiDGND, Ralf HussORCiD, Frank KramerORCiDGND, Iñaki Soto-ReyORCiD, Johannes Raffler
URN:urn:nbn:de:bvb:384-opus4-1189158
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/118915
ISBN:9781643685335OPAC
ISSN:0926-9630OPAC
ISSN:1879-8365OPAC
Parent Title (English):Digital health and informatics innovations for sustainable health care systems: proceedings of MIE 2024
Publisher:IOS Press
Place of publication:Amsterdam
Editor:John Mantas, Arie Hasman, George Demiris, Kaija Saranto, Michael Marschollek, Theodoros N. Arvanitis, Ivana Ognjanović, Arriel Benis, Parisis Gallos, Emmanouil Zoulias, Elisavet Andrikopoulou
Type:Conference Proceeding
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2025/02/07
First Page:1110
Last Page:1114
Series:Studies in Health Technology and Informatics ; 316
DOI:https://doi.org/10.3233/shti240605
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Medizinische Fakultät
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für IT-Infrastrukturen für die Translationale Medizinische Forschung
Medizinische Fakultät / Universitätsklinikum
Medizinische Fakultät / Lehrstuhl für Allgemeine und Spezielle Pathologie
Medizinische Fakultät / Lehrstuhl für Datenmanagement und Clinical Decision Support
Nachhaltigkeitsziele
Nachhaltigkeitsziele / Ziel 3 - Gesundheit und Wohlergehen
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):CC-BY-NC 4.0: Creative Commons: Namensnennung - Nicht kommerziell (mit Print on Demand)