Exploring gender-specific speech patterns in automatic suicide risk assessment

  • In emergency medicine, timely intervention for patients at risk of suicide is often hindered by delayed access to specialised psychiatric care. To bridge this gap, we introduce a speech-based approach for automatic suicide risk assessment. Our study involves a novel dataset comprising speech recordings of 20 patients who read neutral texts. We extract four speech representations encompassing interpretable and deep features. Further, we explore the impact of gender-based modelling and phrase-level normalisation. By applying gender-exclusive modelling, features extracted from an emotion fine-tuned wav2vec2.0 model can be utilised to discriminate high- from low suicide risk with a balanced accuracy of 81%. Finally, our analysis reveals a discrepancy in the relationship of speech characteristics and suicide risk between female and male subjects. For men in our dataset, suicide risk increases together with agitation while voice characteristics of female subjects point the other way.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Maurice GerczukORCiD, Shahin AmiriparianORCiDGND, Justina LutzGND, Wolfgang StrubeORCiDGND, Irina PapazovaGND, Alkomiet HasanORCiDGND, Björn W. SchullerORCiDGND
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/118932
ISSN:2958-1796OPAC
Parent Title (English):Interspeech 2024, Kos, Greece, 1-5 September 2024
Publisher:ISCA
Place of publication:Baixas
Editor:Itshak Lapidot, Sharon Gannot
Type:Conference Proceeding
Language:English
Year of first Publication:2024
Release Date:2025/02/10
First Page:1095
Last Page:1099
DOI:https://doi.org/10.21437/interspeech.2024-1097
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Medizinische Fakultät
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing
Medizinische Fakultät / Lehrstuhl für Psychiatrie und Psychotherapie
Nachhaltigkeitsziele
Nachhaltigkeitsziele / Ziel 3 - Gesundheit und Wohlergehen