An IoT-based novel hybrid seizure detection approach for epileptic monitoring

  • This article focuses on a new electroencephalogram (EEG)-based system for the early detection of epileptic episodes that is made possible by the Internet of Things (IoT). The system is made up of two important units, namely, the multichannel EEG recording unit and the seizure detection unit. Since epileptic information is more useful when included in multichannel EEG data from many brain regions, the primary goals of this work are: designing and developing the seizure detection unit, making use of spike-statistical (SS) flower pollination algorithm (FPA)-based critical spectral verge (CSV)-derived features termed as SS-CSV; and employing the convolutional neural network (CNN) method in an IoT-enabled EEG monitoring system to detect EEG seizures. The presented system performed better, with an average accuracy of 98.48% with the CNN classifier. Neuroexperts will find this approach very useful to analyze seizure information, especially in wearable medical devices.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dhanalekshmi Prasad YedurkarORCiDGND, Shilpa Metkar, Fadi Al-TurjmanORCiD, Nandan YardiORCiD, Thompson StephanORCiD
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/119022
ISSN:1551-3203OPAC
ISSN:1941-0050OPAC
Parent Title (English):IEEE Transactions on Industrial Informatics
Publisher:Institute of Electrical and Electronics Engineers (IEEE)
Place of publication:New York, NY
Type:Article
Language:English
Year of first Publication:2024
Release Date:2025/02/12
Volume:20
Issue:2
First Page:1420
Last Page:1431
DOI:https://doi.org/10.1109/tii.2023.3274913
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Materials Resource Management
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Materials Resource Management / Professur für Mechanical Engineering
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten