Multiresolution directed transfer function approach for segment-wise seizure classification of epileptic EEG signal

  • Currently, with the bloom in artificial intelligence (AI) algorithms, various human-centered smart systems can be utilized, especially in cognitive computing, for the detection of various chronic brain diseases such as epileptic seizure. The primary goal of this research article is to propose a novel human-centered cognitive computing (HCCC) method for segment-wise seizure classification by employing multiresolution extracted data with directed transfer function (DTF) features, termed as the multiresolution directed transfer function (MDTF) approach. Initially, the multiresolution information of the epileptic seizure signal is extracted using a multiresolution adaptive filtering (MRAF) method. These seizure details are passed to the DTF where the information flow of high frequency bands is computed. Thereafter, different measures of complexity such as approximate entropy (AEN) and sample entropy (SAEN) are computed from the extracted high frequency bands. Lastly, a k-nearest neighborCurrently, with the bloom in artificial intelligence (AI) algorithms, various human-centered smart systems can be utilized, especially in cognitive computing, for the detection of various chronic brain diseases such as epileptic seizure. The primary goal of this research article is to propose a novel human-centered cognitive computing (HCCC) method for segment-wise seizure classification by employing multiresolution extracted data with directed transfer function (DTF) features, termed as the multiresolution directed transfer function (MDTF) approach. Initially, the multiresolution information of the epileptic seizure signal is extracted using a multiresolution adaptive filtering (MRAF) method. These seizure details are passed to the DTF where the information flow of high frequency bands is computed. Thereafter, different measures of complexity such as approximate entropy (AEN) and sample entropy (SAEN) are computed from the extracted high frequency bands. Lastly, a k-nearest neighbor (k-NN) and support vector machine (SVM) are used for classifying the EEG signal into non-seizure and seizure data depending on the multiresolution based information flow characteristics. The MDTF approach is tested on a standard dataset and validated using a dataset from a local hospital. The proposed technique has obtained an average sensitivity of 98.31%, specificity of 96.13% and accuracy of 98.89% using SVM classifier. The average detection rate of the MDTF approach is 97.72% which is greater than the existing approaches. The proposed MDTF method will help neuro-specialists to locate seizure information drift which occurs within the consecutive segments and between two channels. The main advantage of the MDTF approach is its capability to locate the seizure activity contained by the EEG signal with accuracy. This will assist the neurologists with the precise localization of the epileptic seizure automatically and hence will reduce the burden of time-consuming epileptic seizure analysis.show moreshow less

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dhanalekshmi Prasad YedurkarORCiDGND, Shilpa P. Metkar, Thompson Stephan
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/119024
ISSN:1871-4080OPAC
ISSN:1871-4099OPAC
Parent Title (English):Cognitive Neurodynamics
Publisher:Springer
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2024
Release Date:2025/02/12
Volume:18
Issue:2
First Page:301
Last Page:315
DOI:https://doi.org/10.1007/s11571-021-09773-z
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Materials Resource Management
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Materials Resource Management / Professur für Mechanical Engineering
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten