Simple process to nanostructured Raney-nickel electrodes for highly active and cost-efficient hydrogen evolution in alkaline water electrolysis (AWE)

  • In this work we present a nanostructured nickel-based electrode with high surface area as cathode for the hydrogen evolution (HER) during alkaline water electrolysis (AEL). The electrodes are prepared via mechanical plating of aluminum on a nickel sheet and thermal treatment in N2-atmosphere at different temperatures to achieve leachable NiAl-phases such as Ni2Al3 and NiAl3. Focus is to increase the electrochemical surface area (ECSA) significantly. The electrochemical performance is evaluated with cyclic voltammetry (CV) and chronopotentiometry (CP) in a three-electrode and full cell setup at current densities up to 1 A/cm2. High efficiency values at the cathode with Tafel slopes from 70 to 80 mV/dec and low overpotentials of 170–200 mV at high currents are determined. Electrochemical impedance spectroscopy (EIS) and chronopotentiometry (CP) are used to study resistances, degradation and stability of the fabricated electrodes. The “carpet-like” structure of the electrode leads to aIn this work we present a nanostructured nickel-based electrode with high surface area as cathode for the hydrogen evolution (HER) during alkaline water electrolysis (AEL). The electrodes are prepared via mechanical plating of aluminum on a nickel sheet and thermal treatment in N2-atmosphere at different temperatures to achieve leachable NiAl-phases such as Ni2Al3 and NiAl3. Focus is to increase the electrochemical surface area (ECSA) significantly. The electrochemical performance is evaluated with cyclic voltammetry (CV) and chronopotentiometry (CP) in a three-electrode and full cell setup at current densities up to 1 A/cm2. High efficiency values at the cathode with Tafel slopes from 70 to 80 mV/dec and low overpotentials of 170–200 mV at high currents are determined. Electrochemical impedance spectroscopy (EIS) and chronopotentiometry (CP) are used to study resistances, degradation and stability of the fabricated electrodes. The “carpet-like” structure of the electrode leads to a 4200x increased surface area of the Nickel catalyst with optimized gas desorption and transport of hydrogen.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Timon GüntherGND, Jonas Schick, Timo Körner, Tobias Mangold, Richard Weihrich
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/119724
ISSN:0360-3199OPAC
Parent Title (English):International Journal of Hydrogen Energy
Publisher:Elsevier BV
Place of publication:Amsterdam
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/03/10
DOI:https://doi.org/10.1016/j.ijhydene.2025.02.398
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Fakultätsübergreifende Institute und Einrichtungen
Fakultätsübergreifende Institute und Einrichtungen / Anwenderzentrum für Material- und Umweltforschung
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Materials Resource Management
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Materials Resource Management / Lehrstuhl für Resource and Chemical Engineering
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
Latest Publications (not yet published in print):Aktuelle Publikationen (noch nicht gedruckt erschienen)
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)