Solving stochastic inverse problems with stochastic BayesFlow

  • Normalizing flows have gained increasing attention in the area of probabilistic modeling. For solving inverse problems, BayesFlow is a state-of-the-art Bayesian inference method based on normalizing flows. However, BayesFlow suffers from overfitting in many real-world scenarios. Therefore, we put forward stochastic BayesFlow, enhancing BayesFlow through stochastic normalizing flows. Apart from being less prone to overfitting, stochastic BayesFlow performs more robustly in parameter identification from noisy observations. Moreover, we develop a stochastic BayesFlow algorithm to solve stochastic inverse problems and validate it using the inverse uncertainty quantification of a simulated vehicle dynamics model.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Yi ZhangORCiDGND, Lars MikelsonsORCiDGND
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/119929
ISBN:978-1-6654-7633-1OPAC
Parent Title (English):2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 28-30 June 2023, Seattle, WA, USA
Publisher:IEEE
Place of publication:Piscataway, NJ
Type:Conference Proceeding
Language:English
Year of first Publication:2023
Contributing Corporation:Seattle, WA, USA
Release Date:2025/03/11
First Page:966
Last Page:972
DOI:https://doi.org/10.1109/AIM46323.2023.10196190
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Ingenieurinformatik mit Schwerpunkt Mechatronik