Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm

  • Since September 2014, NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite has been taking measurements of reflected solar spectra and using them to infer atmospheric carbon dioxide levels. This work provides details of the OCO-2 retrieval algorithm, versions 7 and 8, used to derive the column-averaged dry air mole fraction of atmospheric CO2 () for the roughly 100 000 cloud-free measurements recorded by OCO-2 each day. The algorithm is based on the Atmospheric Carbon Observations from Space (ACOS) algorithm which has been applied to observations from the Greenhouse Gases Observing SATellite (GOSAT) since 2009, with modifications necessary for OCO-2. Because high accuracy, better than 0.25 %, is required in order to accurately infer carbon sources and sinks from , significant errors and regional-scale biases in the measurements must be minimized. We discuss efforts to filter out poor-quality measurements, and correct the remaining good-quality measurements to minimize regional-scaleSince September 2014, NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite has been taking measurements of reflected solar spectra and using them to infer atmospheric carbon dioxide levels. This work provides details of the OCO-2 retrieval algorithm, versions 7 and 8, used to derive the column-averaged dry air mole fraction of atmospheric CO2 () for the roughly 100 000 cloud-free measurements recorded by OCO-2 each day. The algorithm is based on the Atmospheric Carbon Observations from Space (ACOS) algorithm which has been applied to observations from the Greenhouse Gases Observing SATellite (GOSAT) since 2009, with modifications necessary for OCO-2. Because high accuracy, better than 0.25 %, is required in order to accurately infer carbon sources and sinks from , significant errors and regional-scale biases in the measurements must be minimized. We discuss efforts to filter out poor-quality measurements, and correct the remaining good-quality measurements to minimize regional-scale biases. Updates to the radiance calibration and retrieval forward model in version 8 have improved many aspects of the retrieved data products. The version 8 data appear to have reduced regional-scale biases overall, and demonstrate a clear improvement over the version 7 data. In particular, error variance with respect to TCCON was reduced by 20 % over land and 40 % over ocean between versions 7 and 8, and nadir and glint observations over land are now more consistent. While this paper documents the significant improvements in the ACOS algorithm, it will continue to evolve and improve as the CO2 data record continues to expand.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christopher W. O'Dell, Annmarie Eldering, Paul O. Wennberg, David Crisp, Michael R. Gunson, Brendan Fisher, Christian Frankenberg, Matthäus Kiel, Hannakaisa Lindqvist, Lukas Mandrake, Aronne Merrelli, Vijay Natraj, Robert R. Nelson, Gregory B. Osterman, Vivienne H. Payne, Thomas E. Taylor, Debra Wunch, Brian J. Drouin, Fabiano Oyafuso, Albert Chang, James McDuffie, Michael Smyth, David F. Baker, Sourish Basu, Frédéric Chevallier, Sean M. R. Crowell, Liang Feng, Paul I. Palmer, Mavendra Dubey, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, Coleen M. Roehl, Mahesh K. Sha, Kimberly Strong, Ralf SussmannORCiDGND, Yao Te, Osamu Uchino, Voltaire A. Velazco
URN:urn:nbn:de:bvb:384-opus4-1203466
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/120346
ISSN:1867-8548OPAC
Parent Title (English):Atmospheric Measurement Techniques
Publisher:Copernicus
Type:Article
Language:English
Year of first Publication:2018
Publishing Institution:Universität Augsburg
Release Date:2025/03/15
Volume:11
Issue:12
First Page:6539
Last Page:6576
DOI:https://doi.org/10.5194/amt-11-6539-2018
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Geographie
Fakultät für Angewandte Informatik / Institut für Geographie / Lehrstuhl für Physische Geographie mit Schwerpunkt Klimaforschung
Dewey Decimal Classification:9 Geschichte und Geografie / 91 Geografie, Reisen / 910 Geografie, Reisen
Licence (German):License LogoCC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)