Efficient 2D to full 3D human pose uplifting including joint rotations

Download full text files

  • 121495.pdfeng
    (1822KB)

    Postprint. © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Katja LudwigORCiDGND, Yuliia Oksymets, Robin SchönORCiDGND, Daniel KienzleORCiDGND, Rainer LienhartORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1214954
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/121495
ISBN:979-8-3315-9994-2OPAC
ISSN:2160-7516OPAC
Parent Title (English):2025 IEEE/CVF International Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 11-12 June 2025, Nashville, TN, USA
Publisher:IEEE
Place of publication:Piscataway, NJ
Type:Conference Proceeding
Language:English
Date of Publication (online):2025/04/22
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/04/23
First Page:5842
Last Page:5851
DOI:https://doi.org/10.1109/CVPRW67362.2025.00583
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Maschinelles Lernen und Maschinelles Sehen
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht