- Background: The diagnosis of hematologic neoplasms is usually based on a synopsis of the peripheral blood (PB) and bone marrow findings. Morphology continues to be the cornerstone, but genetic analysis plays an increasingly important role. In routine workup, molecular genetic analysis is performed from a bone marrow aspirate (BMA). In the event of inadequate aspiration, PB is used. Not infrequently, however, PB only partially represents the disease. In this situation, molecular genetic analysis of formalin-fixed and paraffin-embedded (FFPE) bone marrow core biopsy (BMCB) could be a better alternative than PB. However, no systematic correlation of genetic findings from BMCB with results from BMA and PB has been reported. Methods: Therefore, BMCB obtained during routine diagnostics were subjected to post hoc molecular genetic analysis using next generation sequencing (NGS). The identified molecular genetic alterations were then compared with data within routine diagnostics of theBackground: The diagnosis of hematologic neoplasms is usually based on a synopsis of the peripheral blood (PB) and bone marrow findings. Morphology continues to be the cornerstone, but genetic analysis plays an increasingly important role. In routine workup, molecular genetic analysis is performed from a bone marrow aspirate (BMA). In the event of inadequate aspiration, PB is used. Not infrequently, however, PB only partially represents the disease. In this situation, molecular genetic analysis of formalin-fixed and paraffin-embedded (FFPE) bone marrow core biopsy (BMCB) could be a better alternative than PB. However, no systematic correlation of genetic findings from BMCB with results from BMA and PB has been reported. Methods: Therefore, BMCB obtained during routine diagnostics were subjected to post hoc molecular genetic analysis using next generation sequencing (NGS). The identified molecular genetic alterations were then compared with data within routine diagnostics of the corresponding BMA and/or PB. Results: In total, 29 BMCB and corresponding BMA samples were analyzed, and in 12/29 cases PB was additionally available. The analysis of BMCB and BMA showed identical results in 17 cases, but BMCB revealed a gain of information in 11, while in only 1 case, BMCB failed to identify the mutations in comparison to BMA. Conclusions: Despite the small numbers, molecular genetic analysis of bone marrow core biopsy using next generation sequencing could detect relevant additional gene mutations compared to bone marrow aspirate and/or peripheral blood.…

