Gauss–Southwell type descent methods for low-rank matrix optimization

  • We consider gradient-related methods for low-rank matrix optimization with a smooth cost function. The methods operate on single factors of the low-rank factorization and share aspects of both alternating and Riemannian optimization. Two possible choices for the search directions based on Gauss–Southwell type selection rules are compared: one using the gradient of a factorized non-convex formulation, the other using the Riemannian gradient. While both methods provide gradient convergence guarantees that are similar to the unconstrained case, numerical experiments on a quadratic cost function indicate that the version based on the Riemannian gradient is significantly more robust with respect to small singular values and the condition number of the cost function. As a side result of our approach, we also obtain new convergence results for the alternating least squares method.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Guillaume Olikier, André UschmajewGND, Bart Vandereycken
URN:urn:nbn:de:bvb:384-opus4-1222321
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/122232
ISSN:0022-3239OPAC
ISSN:1573-2878OPAC
Parent Title (English):Journal of Optimization Theory and Applications
Publisher:Springer Science and Business Media LLC
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/05/23
Volume:206
Issue:1
First Page:6
DOI:https://doi.org/10.1007/s10957-025-02682-9
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Mathematical Data Science
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)