Privacy-protecting image classification within the web browser using deep learning models from Zenodo

  • Integrating deep learning into clinical workflows for medical image analysis holds promise for improving diagnostic accuracy. However, strict data privacy regulations and the sensitivity of clinical IT infrastructure limit the deployment of cloud-based solutions. This paper introduces WebIPred, a web-based application that loads deep learning models directly within the client’s web browser, protecting patient privacy while maintaining compatibility with clinical IT environments. WebIPred supports the application of pre-trained models published on Zenodo and other repositories, allowing clinicians to apply these models to real patient data without the need for extensive technical knowledge. This paper outlines WebIPred’s model integration system, prediction workflow, and privacy features. Our results show that WebIPred offers a privacy-protecting and flexible application for image classification, only relying on client-side processing. WebIPred combines its strong commitment to dataIntegrating deep learning into clinical workflows for medical image analysis holds promise for improving diagnostic accuracy. However, strict data privacy regulations and the sensitivity of clinical IT infrastructure limit the deployment of cloud-based solutions. This paper introduces WebIPred, a web-based application that loads deep learning models directly within the client’s web browser, protecting patient privacy while maintaining compatibility with clinical IT environments. WebIPred supports the application of pre-trained models published on Zenodo and other repositories, allowing clinicians to apply these models to real patient data without the need for extensive technical knowledge. This paper outlines WebIPred’s model integration system, prediction workflow, and privacy features. Our results show that WebIPred offers a privacy-protecting and flexible application for image classification, only relying on client-side processing. WebIPred combines its strong commitment to data privacy and security with a user-friendly interface that makes it easy for clinicians to integrate AI into their workflows.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Florian AuerORCiDGND, Simone MayerORCiD, Frank KramerORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1223935
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/122393
ISBN:9781643685960OPAC
ISSN:0926-9630OPAC
ISSN:1879-8365OPAC
Parent Title (English):Intelligent health systems – from technology to data and knowledge: proceedings of MIE 2025
Publisher:IOS Press
Place of publication:Amsterdam
Editor:Elisavet Andrikopoulou, Parisis Gallos, Theodoros N. Arvanitis, Rosalynn Austin, Arriel Benis, Ronald Cornet, Panagiotis Chatzistergos, Alexander Dejaco, Linda Dusseljee-Peute, Alaa Mohasseb, Pantelis Natsiavas, Haythem Nakkas, Philip Scott
Type:Conference Proceeding
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/05/30
First Page:133
Last Page:137
Series:Studies in Health Technology and Informatics ; 327
DOI:https://doi.org/10.3233/shti250288
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für IT-Infrastrukturen für die Translationale Medizinische Forschung
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY-NC 4.0: Creative Commons: Namensnennung - Nicht kommerziell (mit Print on Demand)